arXiv: Materials Science最新文献

筛选
英文 中文
Nutation in antiferromagnetic resonance 反铁磁共振中的章动
arXiv: Materials Science Pub Date : 2020-12-04 DOI: 10.1103/PHYSREVB.103.104404
Ritwik Mondal, Sebastian Großenbach, Levente Rózsa, U. Nowak
{"title":"Nutation in antiferromagnetic resonance","authors":"Ritwik Mondal, Sebastian Großenbach, Levente Rózsa, U. Nowak","doi":"10.1103/PHYSREVB.103.104404","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.104404","url":null,"abstract":"The effect of inertial spin dynamics is compared between ferromagnetic, antiferromagnetic and ferrimagnetic systems. The linear response to an oscillating external magnetic field is calculated within the framework of the inertial Landau--Lifshitz--Gilbert equation using analytical theory and computer simulations. Precession and nutation resonance peaks are identified, and it is demonstrated that the precession frequencies are reduced by the spin inertia, while the lifetime of the excitations is enhanced. The interplay between precession and nutation is found to be the most prominent in antiferromagnets, where the timescale of the exchange-driven sublattice dynamics is comparable to inertial relaxation times. Consequently, antiferromagnetic resonance techniques should be better suited for the search for intrinsical inertial spin dynamics on ultrafast timescales than ferromagnetic resonance.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81890488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Halide perovskites: third generation photovoltaic materials empowered by metavalent bonding 卤化物钙钛矿:第三代元价键合光伏材料
arXiv: Materials Science Pub Date : 2020-12-03 DOI: 10.21203/rs.3.rs-116034/v1
M. Wuttig, C. Schoen, Mathias Schumacher, J. Robertson, Pavlo Golub, E. Bousquet, J. Raty
{"title":"Halide perovskites: third generation photovoltaic materials empowered by metavalent bonding","authors":"M. Wuttig, C. Schoen, Mathias Schumacher, J. Robertson, Pavlo Golub, E. Bousquet, J. Raty","doi":"10.21203/rs.3.rs-116034/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-116034/v1","url":null,"abstract":"\u0000 Third-generation photovoltaic (PV) materials combine many advantageous properties, including a high optical absorption together with a large charge carrier mobility, facilitated by small effective masses. Halide perovskites (ABX3, where X = I, Br or Cl) appear to be the most promising third-generation PV materials at present. Their opto-electronic properties are governed by the B-X bond. A quantum-chemical bond analysis reveals that this bond differs significantly from ionic, metallic or covalent bonds. Instead, it is better regarded as metavalent, since it shares approximately one p-electron between adjacent atoms. The resulting s–bond is half-filled, which causes pronounced optical absorption. Electron transfer and lattice distortions open a moderate band gap, resulting in charge carriers with small effective masses. Hence metavalent bonding explains the favorable PV properties of halide perovskites. This is summarized in a map for different bond types, which provides a blueprint to design third-generation PV materials.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74185358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Spin-spiral state of a Mn monolayer on W(110) studied by soft x-ray absorption spectroscopy at variable temperatures 软x射线吸收光谱在变温度下研究了W(110)上Mn单分子层的自旋螺旋态
arXiv: Materials Science Pub Date : 2020-12-03 DOI: 10.1103/PhysRevB.103.174419
J. Honolka, S. Krotzky, M. Menzel, T. Herden, V. Sessi, H. Ebert, J. Minár, K. Bergmann, R. Wiesendanger, O. Šipr
{"title":"Spin-spiral state of a Mn monolayer on W(110) studied by soft x-ray absorption spectroscopy at variable temperatures","authors":"J. Honolka, S. Krotzky, M. Menzel, T. Herden, V. Sessi, H. Ebert, J. Minár, K. Bergmann, R. Wiesendanger, O. Šipr","doi":"10.1103/PhysRevB.103.174419","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.174419","url":null,"abstract":"The noncollinear magnetic state of epitaxial Mn monolayers on tungsten (110) crystal surfaces is investigated by means of soft x-ray absorption spectroscopy, to complement earlier spin-polarized STM experiments. X-ray absorption spectra (XAS), x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) Mn L23-edge spectra were measured in the temperature range from 8 to 300 K and compared to results of fully-relativistic ab initio calculations. We show that antiferromagnetic (AFM) helical and cycloidal spirals give rise to significantly different Mn L23-edge XLD signals, enabling thus to distinguish between them. It follows from our results that the magnetic ground state of a Mn monolayer on W(110) is an AFM cycloidal spin spiral. Based on temperature-dependent XAS, XLD and field-induced XMCD spectra we deduce that magnetic properties of the Mn monolayer on W(110) vary with temperature, but this variation lacks a clear indication of a phase transition in the investigated temperature range up to 300 K - even though a crossover exists around 170 K in the temperature dependence of XAS branching ratios and in XLD profiles.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73054167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Atomic forces by quantum Monte Carlo: Application to phonon dispersion calculations 量子蒙特卡罗原子力:声子色散计算的应用
arXiv: Materials Science Pub Date : 2020-12-02 DOI: 10.1103/PHYSREVB.103.L121110
K. Nakano, Tommaso Morresi, M. Casula, R. Maezono, S. Sorella
{"title":"Atomic forces by quantum Monte Carlo: Application to phonon dispersion calculations","authors":"K. Nakano, Tommaso Morresi, M. Casula, R. Maezono, S. Sorella","doi":"10.1103/PHYSREVB.103.L121110","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.L121110","url":null,"abstract":"We report the first successful application of the {it ab initio} quantum Monte Carlo (QMC) framework to a phonon dispersion calculation. A full phonon dispersion of diamond is successfully calculated at the variational Monte Carlo (VMC) level, based on the frozen-phonon technique. The VMC-phonon dispersion is in good agreement with the experimental results, giving renormalized harmonic optical frequencies very close to the experimental values, by significantly improving upon density functional theory (DFT) in the generalized gradient approximation. Key to success for the QMC approach is the statistical error reduction in atomic force evaluation. We show that this can be achieved by using well conditioned atomic basis sets, by explicitly removing the basis-set redundancy, which reduces the statistical error of forces by up to two orders of magnitude. This leads to affordable and accurate QMC-phonons calculations, up to $10^{4}$ times more efficient than previous attempts, and paves the way to new applications, particularly in correlated materials, where phonons have been poorly reproduced so far.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89296300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Above-room-temperature giant thermal conductivity switching in spintronic multilayers 自旋电子多层中的室温以上巨热导率开关
arXiv: Materials Science Pub Date : 2020-11-30 DOI: 10.1063/5.0032531
H. Nakayama, Bin Xu, S. Iwamoto, K. Yamamoto, R. Iguchi, A. Miura, T. Hirai, Y. Miura, Y. Sakuraba, J. Shiomi, K. Uchida
{"title":"Above-room-temperature giant thermal conductivity switching in spintronic multilayers","authors":"H. Nakayama, Bin Xu, S. Iwamoto, K. Yamamoto, R. Iguchi, A. Miura, T. Hirai, Y. Miura, Y. Sakuraba, J. Shiomi, K. Uchida","doi":"10.1063/5.0032531","DOIUrl":"https://doi.org/10.1063/5.0032531","url":null,"abstract":"Thermal switching provides an effective way for active heat flow control, which has recently attracted increasing attention in terms of nanoscale thermal management technologies. In magnetic and spintronic materials, the thermal conductivity depends on the magnetization configuration: this is the magneto-thermal resistance effect. Here we show that an epitaxial Cu/Co$_{50}$Fe$_{50}$ multilayer film exhibits giant magnetic-field-induced modulation of the cross-plane thermal conductivity. The magneto-thermal resistance ratio for the Cu/Co$_{50}$Fe$_{50}$ multilayer reaches 150% at room temperature, which is much larger than the previous record high. Although the ratio decreases with increasing the temperature, the giant magneto-thermal resistance effect of ~100% still appears up to 400 K. The magnetic field dependence of the thermal conductivity of the Cu/Co$_{50}$Fe$_{50}$ multilayer was observed to be about twice greater than that of the cross-plane electrical conductivity. The observation of the giant magneto-thermal resistance effect clarifies a potential of spintronic multilayers as thermal switching devices.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78374434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Stress distribution at the AlN/SiC heterointerface probed by Raman spectroscopy 拉曼光谱探测AlN/SiC异质界面的应力分布
arXiv: Materials Science Pub Date : 2020-11-27 DOI: 10.1063/5.0029682
I. Breev, K. V. Likhachev, V. Yakovleva, René Hübner, G. Astakhov, P. Baranov, E. N. Mokhov, A. Anisimov
{"title":"Stress distribution at the AlN/SiC heterointerface probed by Raman spectroscopy","authors":"I. Breev, K. V. Likhachev, V. Yakovleva, René Hübner, G. Astakhov, P. Baranov, E. N. Mokhov, A. Anisimov","doi":"10.1063/5.0029682","DOIUrl":"https://doi.org/10.1063/5.0029682","url":null,"abstract":"We grow AlN/4H-SiC and AlN/6H-SiC heterostructures by physical vapor deposition and characterize the heterointerface with nanoscale resolution. Furthermore, we investigate the spatial stress and strain distribution in these heterostructures using confocal Raman spectroscopy. We measure the spectral shifts of various vibrational Raman modes across the heterointerface and along the entire depth of the 4H- and 6H-SiC layers. Using the earlier experimental prediction for the phonon-deformation potential constants, we determine the stress tensor components in SiC as a function of the distance from the AlN/SiC heterointerface. In spite that the lattice parameter of SiC is smaller than that of AlN, the SiC layers are compressively strained at the heterointerface. This counterintuitive behavior is explained by different coefficients of thermal expansion of SiC and AlN when the heterostructures are cooled from growth to room temperature. The compressive stress values are maximum at the heterointerface, approaching one GPa, and relaxes to the equilibrium value on the scale of several tens of microns from the heterointerface.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74684507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The influence of growth interruption on the luminescence properties of Ga(As,Sb)-based type II heterostructures 生长中断对Ga(As,Sb)基II型异质结构发光性能的影响
arXiv: Materials Science Pub Date : 2020-11-27 DOI: 10.1016/j.jlumin.2020.117817
Luise Rost, J. Lehr, Milan Maradiya, Lukas Hellweg, Florian Fillsack, W. Stolz, W. Heimbrodt
{"title":"The influence of growth interruption on the luminescence properties of Ga(As,Sb)-based type II heterostructures","authors":"Luise Rost, J. Lehr, Milan Maradiya, Lukas Hellweg, Florian Fillsack, W. Stolz, W. Heimbrodt","doi":"10.1016/j.jlumin.2020.117817","DOIUrl":"https://doi.org/10.1016/j.jlumin.2020.117817","url":null,"abstract":"","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79064624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Giant orbital diamagnetism of three-dimensional Dirac electrons in Sr3PbO antiperovskite Sr3PbO反钙钛矿中三维狄拉克电子的巨轨道抗磁性
arXiv: Materials Science Pub Date : 2020-11-26 DOI: 10.1103/PHYSREVB.103.115117
S. Suetsugu, Kentaro Kitagawa, T. Kariyado, A. Rost, J. Nuss, Claus Mühle, Masao Ogata, H. Takagi
{"title":"Giant orbital diamagnetism of three-dimensional Dirac electrons in \u0000Sr3PbO\u0000 antiperovskite","authors":"S. Suetsugu, Kentaro Kitagawa, T. Kariyado, A. Rost, J. Nuss, Claus Mühle, Masao Ogata, H. Takagi","doi":"10.1103/PHYSREVB.103.115117","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.115117","url":null,"abstract":"In Dirac semimetals, inter-band mixing has been known theoretically to give rise to a giant orbital diamagnetism when the Fermi level is close to the Dirac point. In Bi$ _{1-x}$Sb$ _x$ and other Dirac semimetals, an enhanced diamagnetism in the magnetic susceptibility $chi$ has been observed and interpreted as a manifestation of such giant orbital diamagnetism. Experimentally proving their orbital origin, however, has remained challenging. Cubic antiperovskite Sr$ _3$PbO is a three-dimensional Dirac electron system and shows the giant diamagnetism in $chi$ as in the other Dirac semimetals. $ ^{207}$Pb NMR measurements are conducted in this study to explore the microscopic origin of diamagnetism. From the analysis of the Knight shift $K$ as a function of $chi$ and the relaxation rate $T_1^{-1}$ for samples with different hole densities, the spin and the orbital components in $K$ are successfully separated. The results establish that the enhanced diamagnetism in Sr$ _3$PbO originates from the orbital contribution of Dirac electrons, which is fully consistent with the theory of giant orbital diamagnetism.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90391902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Introduction of Sr into Bi2Se3 thin films by molecular beam epitaxy 分子束外延将Sr引入Bi2Se3薄膜
arXiv: Materials Science Pub Date : 2020-11-25 DOI: 10.1063/5.0039761
L. Riney, C. Bunker, S. Bac, J. Wang, D. Battaglia, Yun-Chang Park, M. Dobrowolska, J. Furdyna, X. Liu, B. Assaf
{"title":"Introduction of Sr into Bi2Se3 thin films by molecular beam epitaxy","authors":"L. Riney, C. Bunker, S. Bac, J. Wang, D. Battaglia, Yun-Chang Park, M. Dobrowolska, J. Furdyna, X. Liu, B. Assaf","doi":"10.1063/5.0039761","DOIUrl":"https://doi.org/10.1063/5.0039761","url":null,"abstract":"SrxBi2Se3 is a candidate topological superconductor but its superconductivity requires the intercalation of Sr by into the van-der-Waals gaps of Bi2Se3. We report the synthesis of SrxBi2Se3 thin films by molecular beam epitaxy, and we characterize their structural, vibrational and electrical properties. X-ray diffraction and Raman spectroscopy show evidence of substitutional Sr alloying into the structure, while transport measurements allow us to correlate the increasing Sr content with an increased n-type doping, but do not reveal superconductivity down to 1.5K. Our results suggest that Sr predominantly occupies sites within a quintuple layer, simultaneously substituting for Bi and as an interstitial. Our results motivate future density functional studies to further investigate the energetics of Sr substitution into Bi2Se3.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73862221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ab initio anharmonic thermodynamic properties of cubic CaSiO3 perovskite 立方CaSiO3钙钛矿的从头算非调和热力学性质
arXiv: Materials Science Pub Date : 2020-11-25 DOI: 10.1103/PHYSREVB.103.104108
Zhen Zhang, R. Wentzcovitch
{"title":"Ab initio\u0000 anharmonic thermodynamic properties of cubic \u0000CaSiO3\u0000 perovskite","authors":"Zhen Zhang, R. Wentzcovitch","doi":"10.1103/PHYSREVB.103.104108","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.104108","url":null,"abstract":"We present an $textit{ab initio}$ study of the thermodynamic properties of cubic CaSiO$_3$ perovskite (CaPv) over the pressure and temperature range of the Earth's lower mantle. We compute the anharmonic phonon dispersions throughout the Brillouin zone by utilizing the phonon quasiparticle approach, which characterizes the intrinsic temperature dependence of phonon frequencies and, in principle, captures full anharmonicity. Such temperature-dependent phonon dispersions are used to calculate $textit{ab initio}$ free energy in the thermodynamic limit ($N rightarrow infty$) within the framework of the phonon gas model. Accurate free energy calculations enable us to investigate cubic CaPv's thermodynamic properties and thermal equation of state, where anharmonic effects are demonstrated. The present methodology provides an important theoretical approach for exploring phase boundaries, thermodynamic, and thermoelastic properties of strongly anharmonic materials at high pressures and temperatures.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87954623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信