Stress distribution at the AlN/SiC heterointerface probed by Raman spectroscopy

I. Breev, K. V. Likhachev, V. Yakovleva, René Hübner, G. Astakhov, P. Baranov, E. N. Mokhov, A. Anisimov
{"title":"Stress distribution at the AlN/SiC heterointerface probed by Raman spectroscopy","authors":"I. Breev, K. V. Likhachev, V. Yakovleva, René Hübner, G. Astakhov, P. Baranov, E. N. Mokhov, A. Anisimov","doi":"10.1063/5.0029682","DOIUrl":null,"url":null,"abstract":"We grow AlN/4H-SiC and AlN/6H-SiC heterostructures by physical vapor deposition and characterize the heterointerface with nanoscale resolution. Furthermore, we investigate the spatial stress and strain distribution in these heterostructures using confocal Raman spectroscopy. We measure the spectral shifts of various vibrational Raman modes across the heterointerface and along the entire depth of the 4H- and 6H-SiC layers. Using the earlier experimental prediction for the phonon-deformation potential constants, we determine the stress tensor components in SiC as a function of the distance from the AlN/SiC heterointerface. In spite that the lattice parameter of SiC is smaller than that of AlN, the SiC layers are compressively strained at the heterointerface. This counterintuitive behavior is explained by different coefficients of thermal expansion of SiC and AlN when the heterostructures are cooled from growth to room temperature. The compressive stress values are maximum at the heterointerface, approaching one GPa, and relaxes to the equilibrium value on the scale of several tens of microns from the heterointerface.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0029682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We grow AlN/4H-SiC and AlN/6H-SiC heterostructures by physical vapor deposition and characterize the heterointerface with nanoscale resolution. Furthermore, we investigate the spatial stress and strain distribution in these heterostructures using confocal Raman spectroscopy. We measure the spectral shifts of various vibrational Raman modes across the heterointerface and along the entire depth of the 4H- and 6H-SiC layers. Using the earlier experimental prediction for the phonon-deformation potential constants, we determine the stress tensor components in SiC as a function of the distance from the AlN/SiC heterointerface. In spite that the lattice parameter of SiC is smaller than that of AlN, the SiC layers are compressively strained at the heterointerface. This counterintuitive behavior is explained by different coefficients of thermal expansion of SiC and AlN when the heterostructures are cooled from growth to room temperature. The compressive stress values are maximum at the heterointerface, approaching one GPa, and relaxes to the equilibrium value on the scale of several tens of microns from the heterointerface.
拉曼光谱探测AlN/SiC异质界面的应力分布
采用物理气相沉积法制备了AlN/4H-SiC和AlN/6H-SiC异质结构,并对其异质界面进行了纳米级分辨率表征。此外,我们利用共聚焦拉曼光谱研究了这些异质结构中的空间应力和应变分布。我们测量了跨异质界面和沿4H-和6H-SiC层的整个深度的各种振动拉曼模式的光谱位移。利用先前对声子变形势常数的实验预测,我们确定了SiC中的应力张量分量作为与AlN/SiC异质界面距离的函数。尽管SiC的晶格参数小于AlN,但SiC层在异质界面处存在压缩应变。当异质结构从生长冷却到室温时,SiC和AlN的热膨胀系数不同可以解释这种违反直觉的行为。压应力值在异质界面处最大,接近1 GPa,并在距离异质界面几十微米的尺度上松弛到平衡值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信