Revealing the Nanostructure of Mesoporous Fuel Cell Catalyst Supports for Durable, High-Power Performance

M. Ko, Elliot Padgett, Venkata Yarlagadda, Anusorn Kongkanand, D. Muller
{"title":"Revealing the Nanostructure of Mesoporous Fuel Cell Catalyst Supports for Durable, High-Power Performance","authors":"M. Ko, Elliot Padgett, Venkata Yarlagadda, Anusorn Kongkanand, D. Muller","doi":"10.1149/1945-7111/ABE28E","DOIUrl":null,"url":null,"abstract":"Achieving high power performance and durability with low Pt loadings are critical challenges for proton exchange membrane fuel cells. PtCo catalysts developed on new carbon black supports show promise by simultaneously providing good oxygen reduction kinetics and local oxygen transport. We investigate the role of nanoscale morphology in the performance of these catalysts supported on accessible (HSC-e and HSC-f) and conventional (Ketjen Black) porous carbons using 3D electron tomography, nitrogen sorption, and electrochemical performance measurements. We find that the accessible porous carbons have hollow interiors with mesopores that are larger and more numerous than conventional porous carbons. However, mesopore-sized openings (>2nm width) are too rare to account for significant oxygen transport. Instead we propose the primary oxygen transport pathway into the interior is through 1-2nm microporous channels permeating the carbon. The increased mesoporosity in the accessible porous carbons results in a shorter diffusion pathlength through constrictive, tortuous micropores in the support shell leading to lower local oxygen transport resistance. In durability testing, the accessible porous carbons show faster rates of electrochemical surface area loss, likely from fewer constrictive pores that would mitigate coarsening, but maintain superior high current density performance at end of life from the improved local oxygen transport.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ABE28E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Achieving high power performance and durability with low Pt loadings are critical challenges for proton exchange membrane fuel cells. PtCo catalysts developed on new carbon black supports show promise by simultaneously providing good oxygen reduction kinetics and local oxygen transport. We investigate the role of nanoscale morphology in the performance of these catalysts supported on accessible (HSC-e and HSC-f) and conventional (Ketjen Black) porous carbons using 3D electron tomography, nitrogen sorption, and electrochemical performance measurements. We find that the accessible porous carbons have hollow interiors with mesopores that are larger and more numerous than conventional porous carbons. However, mesopore-sized openings (>2nm width) are too rare to account for significant oxygen transport. Instead we propose the primary oxygen transport pathway into the interior is through 1-2nm microporous channels permeating the carbon. The increased mesoporosity in the accessible porous carbons results in a shorter diffusion pathlength through constrictive, tortuous micropores in the support shell leading to lower local oxygen transport resistance. In durability testing, the accessible porous carbons show faster rates of electrochemical surface area loss, likely from fewer constrictive pores that would mitigate coarsening, but maintain superior high current density performance at end of life from the improved local oxygen transport.
揭示介孔燃料电池催化剂支架的纳米结构,以实现耐用、高功率性能
在低铂负载下实现高功率性能和耐久性是质子交换膜燃料电池面临的关键挑战。在新的炭黑载体上开发的PtCo催化剂通过同时提供良好的氧还原动力学和局部氧运输显示出希望。我们利用三维电子断层扫描、氮吸附和电化学性能测量,研究了纳米尺度形貌在可及(HSC-e和HSC-f)和传统(Ketjen Black)多孔碳上负载的催化剂性能中的作用。我们发现可接近的多孔碳具有中空的内部,其介孔比传统的多孔碳更大,数量更多。然而,中孔尺寸的开口(>2nm宽度)太少见,无法解释显著的氧输送。相反,我们提出进入内部的主要氧运输途径是通过渗透碳的1-2nm微孔通道。可达多孔碳中介孔的增加导致通过支撑壳中狭窄、弯曲的微孔的扩散路径缩短,从而降低局部氧运输阻力。在耐久性测试中,可接近的多孔碳显示出更快的电化学表面积损失率,这可能是由于减少了可以减轻粗化的收缩孔,但由于改善了局部氧运输,在寿命结束时保持了优越的高电流密度性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信