arXiv: Materials Science最新文献

筛选
英文 中文
Measurement of Volume Changes and Associated Stresses in Ge Electrodes Due to Na/Na+ Redox Reactions Na/Na+氧化还原反应引起的Ge电极体积变化和相关应力的测量
arXiv: Materials Science Pub Date : 2020-11-25 DOI: 10.1149/1945-7111/abd5fc
S. Rakshit, A. Pakhare, Olivia Ruiz, M. Khoshi, E. Detsi, Huixin He, V. Sethuraman, S. Nadimpalli
{"title":"Measurement of Volume Changes and Associated Stresses in Ge Electrodes Due to Na/Na+ Redox Reactions","authors":"S. Rakshit, A. Pakhare, Olivia Ruiz, M. Khoshi, E. Detsi, Huixin He, V. Sethuraman, S. Nadimpalli","doi":"10.1149/1945-7111/abd5fc","DOIUrl":"https://doi.org/10.1149/1945-7111/abd5fc","url":null,"abstract":"In situ electrochemical cells were assembled with an amorphous germanium (a-Ge) film as working electrode and sodium foil as reference and counter electrode. The stresses generated in a-Ge electrodes due to electrochemical reaction with sodium were measured in real-time during the galvanostatic cycling. A specially designed patterned a-Ge electrode was cycled against sodium and the corresponding volume changes were measured using an AFM; it was observed that sodiation/desodiation of a-Ge results in more than 300% volume change, consistent with literature. The potential and stress response showed that the a-Ge film undergoes irreversible changes during the first sodiation process, but the subsequent desodiation/sodiation cycles are reversible. The stress response of the film reached steady-state after the initial sodiation and is qualitatively similar to the response of Ge during lithiation, i.e., initial linear elastic response followed by extensive plastic deformation of the film to accommodate large volume changes. However, despite being bigger ion, sodiation of Ge generated lower stress levels compared to lithiation. Consequently, the mechanical dissipation losses associated with plastic deformation are lower during sodiation process than it is for lithiation.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86230816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Tuning the spontaneous exchange bias effect with Ba to Sr partial substitution in La1.5(Sr0.5−xBax)CoMnO6 La1.5(Sr0.5−xBax)CoMnO6中Ba - Sr部分取代调节自发交换偏置效应
arXiv: Materials Science Pub Date : 2020-11-24 DOI: 10.1063/5.0028663
M. Boldrin, A. G. Silva, L. T. Coutrim, J. Jesus, C. Macchiutti, E. M. Bittar, L. Bufaiçal
{"title":"Tuning the spontaneous exchange bias effect with Ba to Sr partial substitution in La1.5(Sr0.5−xBax)CoMnO6","authors":"M. Boldrin, A. G. Silva, L. T. Coutrim, J. Jesus, C. Macchiutti, E. M. Bittar, L. Bufaiçal","doi":"10.1063/5.0028663","DOIUrl":"https://doi.org/10.1063/5.0028663","url":null,"abstract":"The spontaneous exchange bias (SEB) effect is a remarkable phenomenon recently observed in some reentrant spin-glass materials. Here we investigate the SEB in La$_{1.5}$(Sr$_{0.5-x}$Ba$_{x}$)CoMnO$_{6}$ double-perovskites, a system with multifarious magnetic phases for which a notable increase in the exchange bias field is observed for intermediate Sr/Ba concentrations. The Ba to Sr substitution leads to the enhancement of the crystal lattice, which is accompanied by the raise of both the effective magnetic moment ($mu_{eff}$) and the antiferromagnetic (AFM) transition temperature that is observed below the ferromagnetic ordering. Such increases are likely related to the increased fraction of Co$^{3+}$ in the high spin configuration, leading to the enhancement of Co$^{3+}$--O--Mn$^{4+}$ AFM phase and to the reduction in the uncompensation of the AFM coupling between Co and Mn. The combined effect of the increased $mu_{eff}$ and AFM phase plausible explains the changes in the SEB effect.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72620958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Uniaxial Néel vector control in perovskite oxide thin films by anisotropic strain engineering 各向异性应变工程控制钙钛矿氧化物薄膜中的单轴nsamel矢量
arXiv: Materials Science Pub Date : 2020-11-24 DOI: 10.1103/PhysRevB.103.224435
K. Kjærnes, I. Hallsteinsen, R. Chopdekar, M. Moreau, T. Bolstad, Ingeborg-Helene Svenum, S. Selbach, T. Tybell
{"title":"Uniaxial Néel vector control in perovskite oxide thin films by anisotropic strain engineering","authors":"K. Kjærnes, I. Hallsteinsen, R. Chopdekar, M. Moreau, T. Bolstad, Ingeborg-Helene Svenum, S. Selbach, T. Tybell","doi":"10.1103/PhysRevB.103.224435","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.224435","url":null,"abstract":"Antiferromagnetic thin films typically exhibit a multi-domain state, and control of the antiferromagnetic N'eel vector is challenging as antiferromagnetic materials are robust to magnetic perturbations. By relying on anisotropic in-plane strain engineering of epitaxial thin films of the prototypical antiferromagnetic material LaFeO3, uniaxial N'eel vector control is demonstrated. Orthorhombic (011)- and (101)-oriented DyScO3, GdScO3 and NdGaO3 substrates are used to engineer different anisotropic in-plane strain states. The anisotropic in-plane strain stabilises structurally monodomain monoclinic LaFeO3 thin films. The uniaxial N'eel vector is found along the tensile strained b axis, contrary to bulk LaFeO3 having the N'eel vector along the shorter a axis, and no magnetic domains are found. Hence, anisotropic strain engineering is a viable tool for designing unique functional responses, further enabling antiferromagnetic materials for mesoscopic device technology.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72729201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neutron study of magnetic correlations in rare-earth-free Mn-Bi magnets 无稀土Mn-Bi磁体中磁相关性的中子研究
arXiv: Materials Science Pub Date : 2020-11-23 DOI: 10.1103/PHYSREVMATERIALS.5.034407
A. Malyeyev, Ivan Titov, P. Bender, M. Bersweiler, V. Pipich, S. Muhlbauer, S. Ener, O. Gutfleisch, A. Michels
{"title":"Neutron study of magnetic correlations in rare-earth-free Mn-Bi magnets","authors":"A. Malyeyev, Ivan Titov, P. Bender, M. Bersweiler, V. Pipich, S. Muhlbauer, S. Ener, O. Gutfleisch, A. Michels","doi":"10.1103/PHYSREVMATERIALS.5.034407","DOIUrl":"https://doi.org/10.1103/PHYSREVMATERIALS.5.034407","url":null,"abstract":"We report the results of an unpolarized small-angle neutron scattering (SANS) study on Mn-Bi-based rare-earth-free permanent magnets. The magnetic SANS cross section is dominated by long-wavelength transversal magnetization fluctuations and has been analyzed in terms of the Guinier-Porod model and the distance distribution function. This provides the radius of gyration which, in the remanent state, ranges between about $220-240 , mathrm{nm}$ for the three different alloy compositions investigated. Moreover, computation of the distance distribution function in conjunction with results for the so-called $s$-parameter obtained from the Guinier-Porod model indicate that the magnetic scattering of a Mn$_{45}$Bi$_{55}$ sample has its origin in slightly shape-anisotropic structures.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82519937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Crystal structure prediction by combining graph network and Bayesian optimization 结合图网络和贝叶斯优化的晶体结构预测
arXiv: Materials Science Pub Date : 2020-11-22 DOI: 10.21203/rs.3.rs-814684/v1
Guanjian Cheng, X. Gong, W. Yin
{"title":"Crystal structure prediction by combining graph network and Bayesian optimization","authors":"Guanjian Cheng, X. Gong, W. Yin","doi":"10.21203/rs.3.rs-814684/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-814684/v1","url":null,"abstract":"\u0000 We developed a density functional theory (DFT)-free approach for crystal structure prediction, in which a graph network (GN) is adopted to establish a correlation model between the crystal structure and formation enthalpies, and Bayesian optimization (BO) is used to accelerate the search for crystal structure with optimal formation enthalpy. The approach of combining GN and BO for crystal structure searching (GN-BOSS) can predict crystal structures at given chemical compositions with and without additional constraints on cell shapes and lattice symmetries. The applicability and efficiency of the GN-BOSS approach is then verified by solving the classical Ph-vV challenge. The approach can accurately predict the crystal structures with a computational cost that is three orders of magnitude less than that required for DFT-based approaches. The GN-BOSS approach may open new avenues for data-driven crystal structural predictions without using expensive DFT calculations.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85190346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Built-in electric field control of magnetic coupling in van der Waals semiconductors 范德华半导体中磁耦合的内置电场控制
arXiv: Materials Science Pub Date : 2020-11-22 DOI: 10.1103/PhysRevB.103.L140410
Chengxi Huang, Jing-Han Guan, Qiongyu Li, Fang Wu, P. Jena, E. Kan
{"title":"Built-in electric field control of magnetic coupling in van der Waals semiconductors","authors":"Chengxi Huang, Jing-Han Guan, Qiongyu Li, Fang Wu, P. Jena, E. Kan","doi":"10.1103/PhysRevB.103.L140410","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.L140410","url":null,"abstract":"Electrical control of magnetism in a two-dimensional (2D) semiconductor is of great interest for emerging nanoscale low-dissipation spintronic devices. Here, we propose a general approach of tuning magnetic coupling and anisotropy of a van der Waals (vdW) 2D magnetic semiconductor via a built-in electric field generated by the adsorption of superatomic ions. Using first-principles calculations, we predict a significant enhancement of ferromagnetic (FM) coupling and a great change of magnetic anisotropy in 2D semiconductors when they are sandwiched between superatomic cations and anions. The magnetic coupling is directly affected by the built-in electric field, which lifts the energy levels of mediated ligands' orbitals and enhances the super-exchange interactions. These findings will be of interest for ionic gating controlled ferromagnets and magnetoelectronics based on vdW 2D semiconductors.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91099511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Tetragonality mapping of martensite in a high‑carbon steel by EBSD 用EBSD对高碳钢中马氏体的四方映射
arXiv: Materials Science Pub Date : 2020-11-20 DOI: 10.1016/J.MATCHAR.2021.111040
G. Nolze, A. Winkelmann, G. Cios, T. Tokarski
{"title":"Tetragonality mapping of martensite in a high‑carbon steel by EBSD","authors":"G. Nolze, A. Winkelmann, G. Cios, T. Tokarski","doi":"10.1016/J.MATCHAR.2021.111040","DOIUrl":"https://doi.org/10.1016/J.MATCHAR.2021.111040","url":null,"abstract":"","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78705301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Pressure controlled trimerization for switching of anomalous Hall effect in triangular antiferromagnet Mn3Sn 三角形反铁磁体Mn3Sn中异常霍尔效应开关的压力控制三聚化
arXiv: Materials Science Pub Date : 2020-11-20 DOI: 10.1103/PhysRevResearch.2.043366
C. Singh, Vikram Singh, Gyandeep Pradhan, V. Srihari, H. Poswal, R. Nath, A. Nandy, A. Nayak
{"title":"Pressure controlled trimerization for switching of anomalous Hall effect in triangular antiferromagnet \u0000Mn3Sn","authors":"C. Singh, Vikram Singh, Gyandeep Pradhan, V. Srihari, H. Poswal, R. Nath, A. Nandy, A. Nayak","doi":"10.1103/PhysRevResearch.2.043366","DOIUrl":"https://doi.org/10.1103/PhysRevResearch.2.043366","url":null,"abstract":"Here, we present a detailed theoretical and experimental study on the pressure induced switching of anomalous Hall effect (AHE) in the triangular antiferromagnetic (AFM) compound Mn$_3$Sn. Our theoretical model suggests pressure driven significant splitting of the in-plane Mn bond lengths $i.e.$ an effective trimerization, which in turn stabilizes a helical AFM ground state by modifying the inter-plane exchange parameters in the system. We experimentally demonstrate that the AHE in Mn$_3$Sn reduces from 5$muOmega$ cm at ambient pressure to zero at an applied pressure of about 1.5 GPa. Furthermore, our pressure dependent magnetization study reveals that the conventional triangular AFM ground state of Mn$_3$Sn systematically transforms into the helical AFM phase where the symmetry does not support a non-vanishing Berry curvature required for the realization of a finite AHE. The pressure dependent x-ray diffraction (XRD) study rules out any role of structural phase transition in the observed phenomenon. In addition, the temperature dependent in-plane lattice parameter at ambient pressure is found to deviate from the monotonic behavior when the system enters into the helical AFM phase, thereby, supporting the proposed impact of trimerization in controlling the AHE. We believe that the present study makes an important contribution towards understanding the stabilization mechanism of different magnetic ground states in Mn$_3$Sn and related materials for their potential applications pertaining to AHE switching.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89517573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Exchange interactions and magnetic force theorem 交换相互作用和磁力定理
arXiv: Materials Science Pub Date : 2020-11-20 DOI: 10.1103/PHYSREVB.103.104428
I. Solovyev
{"title":"Exchange interactions and magnetic force theorem","authors":"I. Solovyev","doi":"10.1103/PHYSREVB.103.104428","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.104428","url":null,"abstract":"We critically reexamine the problem of interatomic exchange interactions, which describe the total energy change caused by infinitesimal rotations of spins near some equilibrium state. For the small variations, such interactions can be always related to the response function. However, the form of this relation can depend on additional approximations. Particularly, the commonly used magnetic force theorem (MFT) prescribes the linear relation between the exchange interactions and the response function, while the exact theory requires this dependence to be inverse. We explore the origin and consequences of these differences in the definition for the wide class of materials: ferromagnetic Ni, antiferromagnetic NiO, half-metallic CrO2, multiferroic HoMnO3, and layered magnets CrCl3 and CrI3. While in most of these cases, MFT produces quite reasonable results and can be rigorously justifies in the long wavelength and strong-coupling limits, the exact formulation appears to be more consistent, especially in dealing with two important issues, which typically arise in the theory of exchange interactions: (i) the treatment of the ligand states, and (ii) the choice of the suitable variable for the description of infinitesimal rotations of spins. Both issues can be efficiently resolved by employing the ideas of adiabatic spin dynamics supplemented with the exact expression for the exchange interactions. Particularly, we propose a simple \"downfolding\" procedure for the elimination of the ligand spins by transferring their effect to the interaction parameters between the localized spins. Furthermore, we argue that the rotations of spin moments are more suitable for the description of low-energy excitations, while the rotations of the whole magnetization matrix cause much stronger perturbation in the system of spins.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88241945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Predicting anomalous quantum confinement effect in van der Waals materials 预测范德华材料中的反常量子约束效应
arXiv: Materials Science Pub Date : 2020-11-19 DOI: 10.1103/PhysRevMaterials.5.054602
Kamal Choudhary, F. Tavazza
{"title":"Predicting anomalous quantum confinement effect in van der Waals materials","authors":"Kamal Choudhary, F. Tavazza","doi":"10.1103/PhysRevMaterials.5.054602","DOIUrl":"https://doi.org/10.1103/PhysRevMaterials.5.054602","url":null,"abstract":"Materials with van der Waals-bonding are known to exhibit quantum confinement effect, in which the electronic bandgap of the three-dimensional (3D) realization of a material is lower than that of its two-dimensional (2D) counterpart. However, the possibility of an anomalous quantum confinement effect (AQCE) exists, where the bandgap trend is reversed. In this work, we computationally identify materials for which such AQCE occurs. Using density functional theory (DFT), we compute ~1000 OptB88vdW (semi-local functional), ~50 HSE06 and ~50 PBE0 (hybrid functional) bandgaps for bulk and their corresponding monolayers in the JARVIS-DFT database. OptB88vdW identifies 65 AQCE materials, but the hybrid functionals only confirm such finding in 14 cases. Some of the AQCE systems identified through HSE06 and PBE0 are: hydroxides or oxide hydroxide compounds (AlOH2, Mg(OH)2, Mg2H2O3, Ni(OH)2, SrH2O3) as well as Sb-halogen-chalcogenide compounds (SbSBr, SbSeI) and alkali-chalcogenides (RbLiS and RbLiSe). A detailed electronic structure analysis, based on band-structure and projected density of states, shows AQCE is often characterized by lowering of the conduction band in the monolayer and corresponding changes in the pz electronic orbital contribution, with z being the non-periodic direction in the 2D case. We believe our computational results would spur the effort to validate the results experimentally and will have impact on bandgap engineering applications based on low-dimensional materials.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88342292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信