Uniaxial Néel vector control in perovskite oxide thin films by anisotropic strain engineering

K. Kjærnes, I. Hallsteinsen, R. Chopdekar, M. Moreau, T. Bolstad, Ingeborg-Helene Svenum, S. Selbach, T. Tybell
{"title":"Uniaxial Néel vector control in perovskite oxide thin films by anisotropic strain engineering","authors":"K. Kjærnes, I. Hallsteinsen, R. Chopdekar, M. Moreau, T. Bolstad, Ingeborg-Helene Svenum, S. Selbach, T. Tybell","doi":"10.1103/PhysRevB.103.224435","DOIUrl":null,"url":null,"abstract":"Antiferromagnetic thin films typically exhibit a multi-domain state, and control of the antiferromagnetic N\\'eel vector is challenging as antiferromagnetic materials are robust to magnetic perturbations. By relying on anisotropic in-plane strain engineering of epitaxial thin films of the prototypical antiferromagnetic material LaFeO3, uniaxial N\\'eel vector control is demonstrated. Orthorhombic (011)- and (101)-oriented DyScO3, GdScO3 and NdGaO3 substrates are used to engineer different anisotropic in-plane strain states. The anisotropic in-plane strain stabilises structurally monodomain monoclinic LaFeO3 thin films. The uniaxial N\\'eel vector is found along the tensile strained b axis, contrary to bulk LaFeO3 having the N\\'eel vector along the shorter a axis, and no magnetic domains are found. Hence, anisotropic strain engineering is a viable tool for designing unique functional responses, further enabling antiferromagnetic materials for mesoscopic device technology.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.224435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Antiferromagnetic thin films typically exhibit a multi-domain state, and control of the antiferromagnetic N\'eel vector is challenging as antiferromagnetic materials are robust to magnetic perturbations. By relying on anisotropic in-plane strain engineering of epitaxial thin films of the prototypical antiferromagnetic material LaFeO3, uniaxial N\'eel vector control is demonstrated. Orthorhombic (011)- and (101)-oriented DyScO3, GdScO3 and NdGaO3 substrates are used to engineer different anisotropic in-plane strain states. The anisotropic in-plane strain stabilises structurally monodomain monoclinic LaFeO3 thin films. The uniaxial N\'eel vector is found along the tensile strained b axis, contrary to bulk LaFeO3 having the N\'eel vector along the shorter a axis, and no magnetic domains are found. Hence, anisotropic strain engineering is a viable tool for designing unique functional responses, further enabling antiferromagnetic materials for mesoscopic device technology.
各向异性应变工程控制钙钛矿氧化物薄膜中的单轴nsamel矢量
反铁磁薄膜通常表现为多畴态,由于反铁磁材料对磁扰动具有鲁棒性,因此反铁磁N′eel矢量的控制具有挑战性。基于反铁磁材料LaFeO3外延薄膜的平面内各向异性应变工程,证明了单轴N′eel矢量控制。采用正交(011)和(101)取向的DyScO3、GdScO3和NdGaO3衬底来设计不同的各向异性平面内应变状态。平面内各向异性应变稳定了单畴单斜LaFeO3薄膜的结构。在拉伸应变的b轴上发现了单轴N′eel矢量,而块体LaFeO3的N′eel矢量沿着较短的a轴,并且没有发现磁畴。因此,各向异性应变工程是设计独特功能响应的可行工具,进一步使反铁磁材料用于介观器件技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信