{"title":"Brans-Dicke analogue of the Roberts geometry","authors":"Bardia H. Fahim, V. Faraoni, A. Giusti","doi":"10.1103/PHYSREVD.103.084004","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.084004","url":null,"abstract":"We report a new one-parameter family of spherically symmetric, inhomogeneous, and time-dependent solutions of the vacuum Brans-Dicke field equations which are conformal to the Roberts scalar field geometries of Einstein gravity. The new solution is spherical and time-dependent and contains a naked central singularity. We use it as a seed to generate another two-parameter family of solutions using a known symmetry of vacuum Brans-Dicke gravity.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75309317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manisha Banerjee, Sudipta Das, Abdulla Al Mamon, S. Saha, K. Bamba
{"title":"Growth of perturbations using Lambert W equation of state","authors":"Manisha Banerjee, Sudipta Das, Abdulla Al Mamon, S. Saha, K. Bamba","doi":"10.1142/S0219887821501395","DOIUrl":"https://doi.org/10.1142/S0219887821501395","url":null,"abstract":"Recently, a novel equation of state (EoS) parameter for dark energy has been introduced which deals with a special mathematical function, known as the Lambert$W$ function. In this paper, we study the effect on the growth of perturbations for the Lambert$W$ dark energy model. We perform the analysis for two different approaches. In the first case we consider the universe to be filled with two different fluid components, namely, the baryonic matter component and the Lambert$W$ dark energy component, while in the second case we consider that there is a single fluid component in the universe whose equation of state parameter is described by the Lambert$W$ function. We then compare the growth rates of Lambert$W$ model with that for a standard $Lambda$CDM model as well as the CPL model. Our results indicate that the presence of Lambert$W$ dynamical dark energy sector changes the growth rate and affects the matter fluctuations in the universe to a great extent.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81831606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unruh-DeWitt detector differentiation of black holes and exotic compact objects","authors":"B. Holdom, R. Mann, Chen Zhang","doi":"10.1103/PhysRevD.103.124046","DOIUrl":"https://doi.org/10.1103/PhysRevD.103.124046","url":null,"abstract":"We study the response of a static Unruh-DeWitt detector outside an exotic compact object (ECO) with a general reflective boundary condition in 3+1 dimensions. The horizonless ECO, whose boundary is extremely close to the would-be event horizon, acts as a black hole mimicker. We find that the response rate is notably distinct from the black hole case, even when the ECO boundary is perfectly absorbing. For a (partially) reflective ECO boundary, we find resonance structures in the response rate that depend on the different locations of the ECO boundary and those of the detector. We provide a detailed analysis in connection with the ECO's vacuum mode structure and transfer function.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80403335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study on causality in f(R,ϕ,X) theory","authors":"J. Gonccalves, A. F. Santos","doi":"10.1142/S0217751X21500093","DOIUrl":"https://doi.org/10.1142/S0217751X21500093","url":null,"abstract":"The $k$-essence modified $f(R)$ gravity model, i.e., $f(R,phi,X)$ theory is studied. The question of violation of causality, in the framework of Godel-type universes, is investigated in this gravitational model. Causal and non-causal solutions are allowed. A critical radius for non-causal solution is calculated. It is shown that the violation of causality depends on the content of matter.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88449737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalar perturbations of black holes in Jackiw-Teitelboim gravity","authors":"Srijit Bhattacharjee, Subhodeep Sarkar, Arpan Bhattacharyya","doi":"10.1103/physrevd.103.024008","DOIUrl":"https://doi.org/10.1103/physrevd.103.024008","url":null,"abstract":"We study linear scalar perturbations of black holes in two space-time dimensional (2D) gravity models with particular emphasis on Jackiw-Teitelboim (JT) gravity. We obtain an exact expression for the quasinormal mode frequencies for single horizon JT black holes and then verify it numerically using the Horowitz-Hubeny method. For a 2D Reissner-Nordstr\"om like solution, we find that the scalar wave equation reduces to the confluent Heun equation using which we calculate the quasi-frequencies. Finally, we consider the dimensionally reduced BTZ black hole and obtain the exterior and interior quasinormal modes. The dynamics of a scalar field near the Cauchy horizon mimics the behaviour of the same for the BTZ black hole, indicating a possible violation of strong cosmic censorship conjecture in near extreme limit. However, quantum effects seem to rescue strong cosmic censorship.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88002539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remarks on the Abraham–Minkowski problem, from the formal and from the experimental side","authors":"I. Brevik, M. Chaichian, Ion I. Cotùaescu","doi":"10.1142/S0217751X21500639","DOIUrl":"https://doi.org/10.1142/S0217751X21500639","url":null,"abstract":"We analyze the Abraham-Minkowski problem known from classical electrodynamics from two different perspectives. First, we follow a formal approach, implying use of manifolds with curved space sections in accordance with Fermat's principle, emphasizing that the resulting covariant and contravariant components of the photon four-momentum is a property linked to the {it Minkowski} theory only. There is thus no link to the Abraham theory in that context. Next we turn to the experimental side, giving a brief account of older and newer radiation pressure experiments that clearly show how the Minkowski photon momentum is preferable under optical conditions. Under low-frequency conditions, where experimental detection of the individual oscillations predicted by the Abraham term are possible, the picture is however quite different.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90495658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Bourgoin, S. Bouquillon, Aurélien Hees, C. L. Poncin-Lafitte, Quentin G. Bailey, J. J. Howard, M. Angonin, G. Francou, Julien Chabé, Clément Courde, J.-M. Torre
{"title":"Constraining velocity-dependent Lorentz and \u0000CPT\u0000 violations using lunar laser ranging","authors":"A. Bourgoin, S. Bouquillon, Aurélien Hees, C. L. Poncin-Lafitte, Quentin G. Bailey, J. J. Howard, M. Angonin, G. Francou, Julien Chabé, Clément Courde, J.-M. Torre","doi":"10.1103/PHYSREVD.103.064055","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.064055","url":null,"abstract":"The possibility for Lorentz/CPT-breaking, which is motivated by unification theories, can be systematically tested within the standard-model extension framework. In the pure gravity sector, the mass dimension 5 operators produce new Lorentz and CPT-breaking terms in the 2-body equations of motion that depend on the relative velocity of the bodies. In this Letter, we report new constraints on 15 independent SME coefficients for Lorentz/CPT-violations with mass dimension 5 using lunar laser ranging. We perform a global analysis of lunar ranging data within the SME framework using more than 26,000 normal points between 1969 and 2018. We also perform a jackknife analysis in order to provide realistic estimates of the systematic uncertainties. No deviation from Lorentz/CPT symmetries is reported. In addition, when fitting simultaneously for the 15 canonical SME coefficients for Lorentz/CPT-violations, we improve up to three orders of magnitude previous post-fit constraints from radio pulsars.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87488399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}