Compact objects in entangled relativity

Denis Arruga, O. Rousselle, O. Minazzoli
{"title":"Compact objects in entangled relativity","authors":"Denis Arruga, O. Rousselle, O. Minazzoli","doi":"10.1103/PHYSREVD.103.024034","DOIUrl":null,"url":null,"abstract":"We describe the first numerical Tolman-Oppenheimer-Volkoff solutions of compact objects in entangled relativity, which is an alternative to the framework of general relativity that does not have any additional free parameter. Assuming a simple polytropic equation of state and the conservation of the rest-mass density, we notably show that, for any given density, compact objects are always heavier (up to $\\sim 8\\%$) in entangled relativity than in general relativity -- for any given central density within the usual range of neutron stars' central densities, or for a given radius of the resulting compact object.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.024034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We describe the first numerical Tolman-Oppenheimer-Volkoff solutions of compact objects in entangled relativity, which is an alternative to the framework of general relativity that does not have any additional free parameter. Assuming a simple polytropic equation of state and the conservation of the rest-mass density, we notably show that, for any given density, compact objects are always heavier (up to $\sim 8\%$) in entangled relativity than in general relativity -- for any given central density within the usual range of neutron stars' central densities, or for a given radius of the resulting compact object.
纠缠相对论中的紧致物体
我们描述了纠缠相对论中紧化物体的第一个数值Tolman-Oppenheimer-Volkoff解,它是广义相对论框架的一种替代,没有任何额外的自由参数。假设一个简单的多向状态方程和静止质量密度守恒,我们明显地表明,对于任何给定的密度,纠缠相对论中的致密物体总是比广义相对论中更重(高达8%)——对于中子星中心密度通常范围内的任何给定的中心密度,或者对于给定的半径产生的致密物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信