{"title":"Approximate analytical description of apparent horizons for initial data with momentum and spin","authors":"Emel Altas, B. Tekin","doi":"10.1103/PHYSREVD.103.084036","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.084036","url":null,"abstract":"We construct analytical initial data for a slowly moving and rotating black hole for generic orientations of the linear momentum and the spin. We solve the Hamiltonian constraint approximately and work out the properties of the apparent horizon and show the dependence of its shape on the angle between the spin and the linear momentum. In particular a dimple, whose location depends on the mentioned angle, arises on the 2-sphere geometry of the apparent horizon.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86153066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Amelino-Camelia, Valerio Astuti, Michelangelo Palmisano, M. Ronco
{"title":"Multi-particle systems in quantum spacetime and a novel challenge for center-of-mass motion","authors":"G. Amelino-Camelia, Valerio Astuti, Michelangelo Palmisano, M. Ronco","doi":"10.1142/S0218271821500462","DOIUrl":"https://doi.org/10.1142/S0218271821500462","url":null,"abstract":"In recent times there has been considerable interest in scenarios for quantum gravity in which particle kinematics is affected nonlinearly by the Planck scale, with encouraging results for the phenomenological prospects, but also some concerns that the nonlinearities might produce pathological properties for composite/multiparticle systems. We here focus on kinematics in the $kappa$-Minkowski noncommutative spacetime, the quantum spacetime which has been most studied from this perspective, and compare the implications of the alternative descriptions of the total momentum of a multiparticle system which have been so far proposed. We provide evidence suggesting that priority should be given to defining the total momentum as the standard linear sum of the momenta of the particles composing the system. We also uncover a previously unnoticed feature concerning some (minute but conceptually important) effects on center-of-mass motion due to properties of the motion of the constituents relative to the center of mass.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78336870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Results from high-frequency all-sky search for continuous gravitational waves from small-ellipticity sources","authors":"V. Dergachev, M. Papa","doi":"10.1103/PHYSREVD.103.063019","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.063019","url":null,"abstract":"We present the results of an all-sky search for continuous gravitational wave signals with frequencies in the 1700-2000 Hz range from neutron stars with ellipticity of 1e-8. The search employs the Falcon analysis pipeline on LIGO O2 public data. Our results improve by a factor greater than 5 over [citation 5]. Within the probed frequency range and aside from the detected outliers, we can exclude neutron stars with ellipticity of 1e-8 within 65 pc of Earth. We set upper limits on the gravitational wave amplitude that hold even for worst-case signal parameters. New outliers are found, some of which we are unable to associate with any instrumental cause. If any were associated with a rotating neutron star, this would likely be the fastest neutron star today.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88509667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kerr black holes with synchronized axionic hair","authors":"J. F. Delgado, C. Herdeiro, E. Radu","doi":"10.1103/PhysRevD.103.104029","DOIUrl":"https://doi.org/10.1103/PhysRevD.103.104029","url":null,"abstract":"We construct and analyse Kerr black holes (BHs) with synchronised axionic hair. These are the BH generalisations of the recently constructed rotating axion boson stars arXiv:2005.05982. Such BHs are stationary, axially symmetric, asymptotically flat solutions of the complex Einstein-Klein-Gordon theory with a QCD axion-like potential. They are regular everywhere on and outside the event horizon. The potential is characterised by two parameters: the mass of the axion-like particle, $m_a$ and the decay constant $f_a$. The limit $f_a rightarrow infty$ recovers the original example of Kerr BHs with synchronised scalar hair arXiv:1403.2757. The effects of the non-linearities in the potential become important for $f_a lesssim 1$. We present an overview of the parameter space of the solutions together with a study of their basic geometric and phenomenological properties, for an illustrative value of the coupling that yields a non-negligible impact of the self-interactions.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74513505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schwarzschild Like Solution with Global Monopole in Bumblebee Gravity","authors":"Ibrahim Gullu, A. Övgün","doi":"10.20944/preprints202012.0142.v1","DOIUrl":"https://doi.org/10.20944/preprints202012.0142.v1","url":null,"abstract":"In this paper, by considering Einstein-Hilbert-Bumblebee (EHB) gravity around global monopole field, we derive exactly a black hole spacetime metric. To test the effect of global monopole field and bumblebee field, which causes the spontaneous Lorentz symmetry breaking, we calculate the weak deflection angle using the Gauss-Bonnet theorem.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87813837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Common-spectrum process versus cross-correlation for gravitational-wave searches using pulsar timing arrays","authors":"J. Romano, J. Hazboun, X. Siemens, A. Archibald","doi":"10.1103/PHYSREVD.103.063027","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.063027","url":null,"abstract":"The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has recently reported strong statistical evidence for a common-spectrum red-noise process for all pulsars, as seen in their 12.5-yr analysis for an isotropic stochastic gravitational-wave background. However, there is currently very little evidence for quadrupolar spatial correlations across the pulsars in the array, which is needed to make a confident claim of detection of a stochastic background. Here we give a frequentist analysis of a very simple signal+noise model showing that the current lack of evidence for spatial correlations is consistent with the magnitude of the correlation coefficients for pairs of Earth-pulsar baselines in the array, and the fact that pulsar timing arraysbare most-likely operating in the intermediate-signal regime. We derive analytic expressions that allow one to compare the expected values of the signal-to-noise ratios for both the common-spectrum and cross-correlation estimators.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91506210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implications of Kleinian relativity","authors":"F. Alves-Júnior, A. B. Barreto, F. Moraes","doi":"10.1103/PHYSREVD.103.044023","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.044023","url":null,"abstract":"Inspired in metamaterials, we present a covariant mechanics for particles in Kleinian spacetime and show some of its effects, such as time contraction and length dilatation. We present the new expressions for relativistic momentum and energy for a point-like particle. To illustrate the new mechanics, we describe the particle motion under a uniform Newtonian gravitational field. We also revisit the free spin-half particle problem in Kleinian spacetime, discuss some quantum implications, like the constraint on the dispersion relation for Weyl fermions, and adapt a metamaterial analog system to Klein spacetime.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81862234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Renormalization group analysis of superradiant growth of self-interacting axion cloud","authors":"Hidetoshi Omiya, Takuya Takahashi, Takahiro Tanaka","doi":"10.1093/PTEP/PTAB032","DOIUrl":"https://doi.org/10.1093/PTEP/PTAB032","url":null,"abstract":"There are strong interests in considering ultra-light scalar fields (especially axion) around a rapidly rotating black hole because of the possibility of observing gravitational waves from axion condensate (axion cloud) around black holes. Motivated by this consideration, we propose a new method to study the dynamics of an ultra-light scalar field with self-interaction around a rapidly rotating black hole, which uses the dynamical renormalization group method. We find that for relativistic clouds, saturation of the superradiant instability by the scattering of the axion due to the self-interaction does not occur in the weakly non-linear regime when we consider the adiabatic growth of the cloud from a single superradiant mode. This may suggest that for relativistic axion clouds, an explosive phenomenon called the Bosenova may inevitably happen, at least once in its evolutionary history.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76521442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rotation, embedding, and topology for the Szekeres geometry","authors":"C. Hellaby, R. Buckley","doi":"10.1103/PHYSREVD.103.043510","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.043510","url":null,"abstract":"Recent work on the Szekeres inhomogeneous cosmological models uncovered a surprising rotation effect. Hellaby showed that the angular $(theta, phi)$ coordinates do not have a constant orientation, while Buckley and Schlegel provided explicit expressions for the rate of rotation from shell to shell, as well as the rate of tilt when the 3-space is embedded in a flat 4-d Euclidean space. We here investigate some properties of this embedding, for the quasi-spherical recollapsing case, and use it to show that the two sets of results are in complete agreement. We also show how to construct Szekeres models that are closed in the \"radial\" direction, and hence have a 'natural' embedded torus topology. Several explicit models illustrate the embedding as well as the shell rotation and tilt effects.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74944466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Onset of rotating scalarized black holes in Einstein-Chern-Simons-Scalar theory","authors":"Y. S. Myung, De-Cheng Zou","doi":"10.1016/J.PHYSLETB.2021.136081","DOIUrl":"https://doi.org/10.1016/J.PHYSLETB.2021.136081","url":null,"abstract":"","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80987253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}