Szekeres几何的旋转、嵌入和拓扑

C. Hellaby, R. Buckley
{"title":"Szekeres几何的旋转、嵌入和拓扑","authors":"C. Hellaby, R. Buckley","doi":"10.1103/PHYSREVD.103.043510","DOIUrl":null,"url":null,"abstract":"Recent work on the Szekeres inhomogeneous cosmological models uncovered a surprising rotation effect. Hellaby showed that the angular $(\\theta, \\phi)$ coordinates do not have a constant orientation, while Buckley and Schlegel provided explicit expressions for the rate of rotation from shell to shell, as well as the rate of tilt when the 3-space is embedded in a flat 4-d Euclidean space. We here investigate some properties of this embedding, for the quasi-spherical recollapsing case, and use it to show that the two sets of results are in complete agreement. We also show how to construct Szekeres models that are closed in the \"radial\" direction, and hence have a 'natural' embedded torus topology. Several explicit models illustrate the embedding as well as the shell rotation and tilt effects.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotation, embedding, and topology for the Szekeres geometry\",\"authors\":\"C. Hellaby, R. Buckley\",\"doi\":\"10.1103/PHYSREVD.103.043510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work on the Szekeres inhomogeneous cosmological models uncovered a surprising rotation effect. Hellaby showed that the angular $(\\\\theta, \\\\phi)$ coordinates do not have a constant orientation, while Buckley and Schlegel provided explicit expressions for the rate of rotation from shell to shell, as well as the rate of tilt when the 3-space is embedded in a flat 4-d Euclidean space. We here investigate some properties of this embedding, for the quasi-spherical recollapsing case, and use it to show that the two sets of results are in complete agreement. We also show how to construct Szekeres models that are closed in the \\\"radial\\\" direction, and hence have a 'natural' embedded torus topology. Several explicit models illustrate the embedding as well as the shell rotation and tilt effects.\",\"PeriodicalId\":8455,\"journal\":{\"name\":\"arXiv: General Relativity and Quantum Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.043510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.043510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近对塞克雷斯非均匀宇宙学模型的研究发现了一个令人惊讶的旋转效应。Hellaby表明,角坐标$(\theta, \phi)$不具有恒定的方向,而Buckley和Schlegel提供了从壳到壳的旋转速率的显式表达式,以及当三维空间嵌入平坦的四维欧几里得空间时的倾斜速率。我们在这里研究了这种嵌入的一些性质,对于拟球面重折叠情况,并用它来证明两组结果是完全一致的。我们还展示了如何构建在“径向”方向上闭合的Szekeres模型,从而具有“自然”嵌入环面拓扑。几个显式模型说明了嵌入以及壳的旋转和倾斜效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotation, embedding, and topology for the Szekeres geometry
Recent work on the Szekeres inhomogeneous cosmological models uncovered a surprising rotation effect. Hellaby showed that the angular $(\theta, \phi)$ coordinates do not have a constant orientation, while Buckley and Schlegel provided explicit expressions for the rate of rotation from shell to shell, as well as the rate of tilt when the 3-space is embedded in a flat 4-d Euclidean space. We here investigate some properties of this embedding, for the quasi-spherical recollapsing case, and use it to show that the two sets of results are in complete agreement. We also show how to construct Szekeres models that are closed in the "radial" direction, and hence have a 'natural' embedded torus topology. Several explicit models illustrate the embedding as well as the shell rotation and tilt effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信