先进LIGO首次观测运行中参数估计的可靠性

S. Kulkarni, C. Capano
{"title":"先进LIGO首次观测运行中参数估计的可靠性","authors":"S. Kulkarni, C. Capano","doi":"10.1103/PHYSREVD.103.104002","DOIUrl":null,"url":null,"abstract":"Accurate parameter estimation is key to maximizing the scientific impact of gravitational-wave astronomy. Parameters of a binary merger are typically estimated using Bayesian inference. It is necessary to make several assumptions when doing so, one of which is that the the detectors output stationary Gaussian noise. We test the validity of these assumptions by performing percentile-percentile tests in both simulated Gaussian noise and real detector data in the first observing run of Advanced LIGO (O1). We add simulated signals to 512s of data centered on each of the three events detected in O1 -- GW150914, GW151012, and GW151226 -- and check that the recovered credible intervals match statistical expectations. We find that we are able to recover unbiased parameter estimates in the real detector data, indicating that the assumption of Gaussian noise does not adversely effect parameter estimates. However, we also find that both the parallel-tempered emcee sampler emcee_pt and the nested sampler dynesty struggle to produced unbiased parameter estimates for GW151226-like signals, even in simulated Gaussian noise. The emcee_pt sampler does produce unbiased estimates for GW150914-like signals. This highlights the importance of performing percentile-percentile tests in different targeted areas of parameter space.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliability of parameter estimates in the first observing run of Advanced LIGO\",\"authors\":\"S. Kulkarni, C. Capano\",\"doi\":\"10.1103/PHYSREVD.103.104002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate parameter estimation is key to maximizing the scientific impact of gravitational-wave astronomy. Parameters of a binary merger are typically estimated using Bayesian inference. It is necessary to make several assumptions when doing so, one of which is that the the detectors output stationary Gaussian noise. We test the validity of these assumptions by performing percentile-percentile tests in both simulated Gaussian noise and real detector data in the first observing run of Advanced LIGO (O1). We add simulated signals to 512s of data centered on each of the three events detected in O1 -- GW150914, GW151012, and GW151226 -- and check that the recovered credible intervals match statistical expectations. We find that we are able to recover unbiased parameter estimates in the real detector data, indicating that the assumption of Gaussian noise does not adversely effect parameter estimates. However, we also find that both the parallel-tempered emcee sampler emcee_pt and the nested sampler dynesty struggle to produced unbiased parameter estimates for GW151226-like signals, even in simulated Gaussian noise. The emcee_pt sampler does produce unbiased estimates for GW150914-like signals. This highlights the importance of performing percentile-percentile tests in different targeted areas of parameter space.\",\"PeriodicalId\":8455,\"journal\":{\"name\":\"arXiv: General Relativity and Quantum Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.104002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.104002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

准确的参数估计是最大限度地发挥引力波天文学科学影响的关键。二元并合的参数通常使用贝叶斯推理来估计。这样做有必要做几个假设,其中一个假设是检测器输出平稳高斯噪声。我们通过在模拟高斯噪声和实际探测器数据中进行百分位数检验来检验这些假设的有效性。我们将模拟信号添加到512s的数据中,这些数据以1中检测到的三个事件(GW150914、GW151012和GW151226)为中心,并检查恢复的可信区间是否符合统计预期。我们发现我们能够在真实检测器数据中恢复无偏参数估计,这表明高斯噪声的假设不会对参数估计产生不利影响。然而,我们也发现,即使在模拟高斯噪声中,并行调质采样器emcee_pt和嵌套采样器代数也难以对类似gw151226的信号产生无偏参数估计。emcee_pt采样器确实对gw150914类信号产生无偏估计。这突出了在参数空间的不同目标区域执行百分位数测试的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability of parameter estimates in the first observing run of Advanced LIGO
Accurate parameter estimation is key to maximizing the scientific impact of gravitational-wave astronomy. Parameters of a binary merger are typically estimated using Bayesian inference. It is necessary to make several assumptions when doing so, one of which is that the the detectors output stationary Gaussian noise. We test the validity of these assumptions by performing percentile-percentile tests in both simulated Gaussian noise and real detector data in the first observing run of Advanced LIGO (O1). We add simulated signals to 512s of data centered on each of the three events detected in O1 -- GW150914, GW151012, and GW151226 -- and check that the recovered credible intervals match statistical expectations. We find that we are able to recover unbiased parameter estimates in the real detector data, indicating that the assumption of Gaussian noise does not adversely effect parameter estimates. However, we also find that both the parallel-tempered emcee sampler emcee_pt and the nested sampler dynesty struggle to produced unbiased parameter estimates for GW151226-like signals, even in simulated Gaussian noise. The emcee_pt sampler does produce unbiased estimates for GW150914-like signals. This highlights the importance of performing percentile-percentile tests in different targeted areas of parameter space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信