{"title":"外部麦克斯韦场中的Bonnor-Vaidya带电质点","authors":"P. A. Hogan, D. Puetzfeld","doi":"10.1103/PHYSREVD.103.044039","DOIUrl":null,"url":null,"abstract":"By introducing external Maxwell and gravitational fields we modify the Bonnor--Vaidya field of an arbitrarily accelerating charged mass moving rectilinearly in order to satisfy the vacuum Einstein--Maxwell field equations approximately, assuming the charge $e$ and the mass $m$ are small of first order.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bonnor-Vaidya charged point mass in an external Maxwell field\",\"authors\":\"P. A. Hogan, D. Puetzfeld\",\"doi\":\"10.1103/PHYSREVD.103.044039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By introducing external Maxwell and gravitational fields we modify the Bonnor--Vaidya field of an arbitrarily accelerating charged mass moving rectilinearly in order to satisfy the vacuum Einstein--Maxwell field equations approximately, assuming the charge $e$ and the mass $m$ are small of first order.\",\"PeriodicalId\":8455,\"journal\":{\"name\":\"arXiv: General Relativity and Quantum Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.044039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.044039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bonnor-Vaidya charged point mass in an external Maxwell field
By introducing external Maxwell and gravitational fields we modify the Bonnor--Vaidya field of an arbitrarily accelerating charged mass moving rectilinearly in order to satisfy the vacuum Einstein--Maxwell field equations approximately, assuming the charge $e$ and the mass $m$ are small of first order.