{"title":"Exploring the QCD phase diagram via reweighting from isospin chemical potential","authors":"B. Brandt, F. Cuteri, G. Endrődi, S. Schmalzbauer","doi":"10.22323/1.363.0189","DOIUrl":"https://doi.org/10.22323/1.363.0189","url":null,"abstract":"We investigate the QCD phase diagram for small values of baryon and strange quark chemical potentials from simulations at non-zero isospin chemical potential. Simulations at pure isospin chemical potential are not hindered by the sign problem and pion condensation can be observed for sufficiently large isospin chemical potentials. We study how the related phase boundary evolves with baryonic and strange chemical potentials via reweighting in quark chemical potentials and discuss our results. Furthermore, we propose and implement an alternative method to approach nonzero baryon (and strange quark) chemical potentials. This method involves simulations where physical quarks are paired with auxiliary quarks in unphysical \"isospin\" doublets and a decoupling of the auxiliary quarks by mass reweighting.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87442739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Misumi, T. Fujimori, E. Itou, M. Nitta, N. Sakai
{"title":"Lattice study on the twisted ${mathbb C} P^{N-1}$ models on ${mathbb R} times S^1$","authors":"T. Misumi, T. Fujimori, E. Itou, M. Nitta, N. Sakai","doi":"10.22323/1.363.0015","DOIUrl":"https://doi.org/10.22323/1.363.0015","url":null,"abstract":"We report the results of the lattice simulation of the ${mathbb C} P^{N-1}$ sigma model \u0000on $S_{s}^{1}$(large) $times$ $S_{tau}^{1}$(small). We take a sufficiently large ratio of the circumferences to approximate the model on ${mathbb R} times S^1$. For periodic boundary condition imposed in the $S_{tau}^{1}$ direction, we show that the expectation value of the Polyakov loop undergoes a deconfinement crossover as the compactified circumference is decreased, where the peak of the associated susceptibility gets sharper for larger $N$. For ${mathbb Z}_{N}$ twisted boundary condition, we find that, even at relatively high $beta$ (small circumference), the regular $N$-sided polygon-shaped distributions of Polyakov loop leads to small expectation values of Polyakov loop, which implies unbroken ${mathbb Z}_{N}$ symmetry if sufficient statistics and large volumes are adopted. We also argue the existence of fractional instantons and bions by investigating the dependence of the Polyakov loop on $S_{s}^{1}$ direction, which causes transition between ${mathbb Z}_{N}$ vacua.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"26 1","pages":"015"},"PeriodicalIF":0.0,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88210211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-current correlations and DPDs for the nucleon on the lattice","authors":"C. Zimmermann","doi":"10.22323/1.363.0040","DOIUrl":"https://doi.org/10.22323/1.363.0040","url":null,"abstract":"We calculate correlation functions of two local operators within the nucleon carrying momentum. We resolve their dependence on the spatial distance of the currents. This is carried out for all Wick contractions, taking into account several operator insertion types. The resulting four-point functions can be related to parton distribution functions as well as to Mellin moments of double parton distributions. For the latter, we analyze their quark spin and flavor dependency. In this first study, we employ an $N_F = 2 + 1$ CLS ensemble on a $96 times 32^3$ lattice with lattice spacing $a = 0.0856 mathrm{fm}$ and the pseudoscalar masses $m_pi = 355 mathrm{MeV}$ and $m_K = 441 mathrm{MeV}$.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"121 19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83608937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interglueball potential in SU(N$_c$) lattice gauge theory","authors":"N. Yamanaka, H. Iida, A. Nakamura, M. Wakayama","doi":"10.22323/1.363.0013","DOIUrl":"https://doi.org/10.22323/1.363.0013","url":null,"abstract":"We report on our calculation of the interglueball potentials in SU(2), SU(3), and SU(4) lattice Yang-Mills theories using the indirect (so-called HAL QCD) method. We use the cluster decomposition error reduction technique to improve the statistical accuracy of the glueball correlators. After calculating the glueball scattering cross section in SU(2) Yang-Mills theory and combining with the observational data of the dark matter mass distributions, we derive the lower limit on the scale parameter.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86537862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Bennett, D. Hong, Jong-Wan Lee, C. Lin, B. Lucini, M. Piai, Davide Vadacchino
{"title":"Meson spectrum of Sp(4) lattice gauge theory with two fundamental Dirac fermions","authors":"E. Bennett, D. Hong, Jong-Wan Lee, C. Lin, B. Lucini, M. Piai, Davide Vadacchino","doi":"10.22323/1.363.0054","DOIUrl":"https://doi.org/10.22323/1.363.0054","url":null,"abstract":"We calculate the meson spectrum of the Sp(4) lattice gauge theory coupled to two fundamental flavours of dynamical Dirac fermions. We focus on some of the lightest (flavoured) spin-0 and spin-1 states. This theory provides an ultraviolet completion for composite Higgs models based upon the SU(4)/Sp(4) coset. We analyse the strongly coupled dynamics in isolation, without explicit coupling to the standard model. We carry out continuum extrapolations using dynamical ensembles generated at five different values of bare lattice coupling, and for several values of the bare fermion mass. We fit the resulting meson masses and decay constants to a low-energy effective field theory built along the ideas of hidden local symmetry. We also compare our results to those of other closely related lattice gauge theories, which have matter content consisting of two fundamental Dirac flavours.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87699784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nucleon isovector charges from physical mass domain-wall QCD.","authors":"S. Ohta","doi":"10.22323/1.363.0051","DOIUrl":"https://doi.org/10.22323/1.363.0051","url":null,"abstract":"Systematics in nucleon isovector vector, $g_V$, and axialvector, $g_A$, charges calculated on a 2+1-flavor dynamical domain-wall-fermions (DWF) ensemble at physical mass jointly generated by RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations with lattice cut off of 1.730(4) GeV, are analyzed. Both are calculated with about a percent or less statistical errors. A few standard-deviation systematics seen in vector charge is consistent with possible $O(a^2)$ discretization error through small excited-state contamination. Axialvector charge is found with three to nine standard-deviation systematic deficit, compared with experiments, depending on calculation methods.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74123845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Details of a staggered fermion data analysis","authors":"Maximilian Ammer, S. Durr","doi":"10.22323/1.363.0048","DOIUrl":"https://doi.org/10.22323/1.363.0048","url":null,"abstract":"We present technical details of an analysis of pseudo-scalar data from a QCD simulation with staggered fermions. The data were obtained close to the physical point with an inverse lattice spacing of about 3 GeV, and $N_f=2+1+1$. We compare different methods of extracting effective masses and decay constants in lattice units. The results of several correlated and uncorrelated fitting methods are compared, both on the simulated data set, and on a synthetically generated data set.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90339644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lattice gauge theory for the Haldane conjecture and central-branch Wilson fermion","authors":"T. Misumi, Y. Tanizaki","doi":"10.1093/PTEP/PTAA003","DOIUrl":"https://doi.org/10.1093/PTEP/PTAA003","url":null,"abstract":"We develop the $(1+1)$d lattice $U(1)$ gauge theory in order to define $2$-flavor massless Schwinger model, and discuss its connection with Haldane conjecture. We propose to use the central-branch Wilson fermion, which is defined by relating the mass, $m$, and the Wilson parameter, $r$, as $m+2r=0$. This setup gives two massless Dirac fermions in the continuum limit, and it turns out that no fine-tuning of $m$ is required because the extra $U(1)$ symmetry at the central branch, $U(1)_{bar{V}}$, prohibits the additive mass renormalization. Moreover, we show that Dirac determinant is positive semi-definite and this formulation is free from the sign problem, so the Monte Carlo simulation of the path integral is possible. By identifying the symmetry at low energy, we show that this lattice model has the mixed 't Hooft anomaly between $U(1)_{bar{V}}$, lattice translation, and lattice rotation. We discuss its relation to the anomaly of half-integer anti-ferromagnetic spin chains, so our lattice gauge theory is suitable for numerical simulation of Haldane conjecture. Furthermore, it gives new and strict understanding on parity-broken phase (Aoki phase) of $2$d Wilson fermion.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81467400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Campos, M. D. Brida, G. D. Divitiis, A. Lytle, M. Papinutto, A. Vladikas
{"title":"$chi$SF near the electroweak scale","authors":"I. Campos, M. D. Brida, G. D. Divitiis, A. Lytle, M. Papinutto, A. Vladikas","doi":"10.22323/1.363.0202","DOIUrl":"https://doi.org/10.22323/1.363.0202","url":null,"abstract":"We employ the chirally rotated Schrodinger functional ($chi$SF) to study two-point fermion bilinear correlation functions used in the determination of $Z_{A,V,S,P,T}$ on a series of well-tuned ensembles. The gauge configurations, which span renormalisation scales from 4 to 70~GeV, are generated with $N_{rm f}=3$ massless flavors and Schrodinger Functional (SF) boundary conditions. Valence quarks are computed with $chi$SF boundary conditions. We show preliminary results on the tuning of the $chi$SF Symanzik coefficient $z_f$ and the scaling of the axial current normalization $Z_{rm A}$. Moreover we carry out a detailed comparison with the expectations from one-loop perturbation theory. Finally we outline how automatically $mathrm{O}(a)$-improved $B_{rm K}$ matrix elements, including BSM contributions, can be computed in a $chi$SF renormalization scheme.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85629747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Darvish, R. Brett, J. Bulava, Jacob Fallica, Andrew D. Hanlon, Ben Horz, C. Morningstar
{"title":"Including tetraquark operators in the low-lying scalar meson sectors in lattice QCD","authors":"D. Darvish, R. Brett, J. Bulava, Jacob Fallica, Andrew D. Hanlon, Ben Horz, C. Morningstar","doi":"10.1063/5.0008966","DOIUrl":"https://doi.org/10.1063/5.0008966","url":null,"abstract":"Lattice QCD allows us to probe the low-lying hadron spectrum in finite-volume using a basis of single- and multi-hadron interpolating operators. Here we examine the effect of including tetraquark operators on the spectrum in the scalar meson sectors containing the $K_0^*(700)$ ($kappa$) and the $a_0(980)$ in $N_f = 2 + 1$ QCD, with $m_pi approx 230$ MeV. Preliminary results of additional finite-volume states found using tetraquark operators are shown, and possible implications of these states are discussed.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73134745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}