Lefschetz顶针的模拟测量理论

J. Pawlowski, M. Scherzer, C. Schmidt, Felix Ziegler, F. Ziesch'e
{"title":"Lefschetz顶针的模拟测量理论","authors":"J. Pawlowski, M. Scherzer, C. Schmidt, Felix Ziegler, F. Ziesch'e","doi":"10.22323/1.363.0223","DOIUrl":null,"url":null,"abstract":"Lefschetz thimbles have been proposed recently as a possible solution to the complex action problem (sign problem) in Monte Carlo simulations. Here we discuss pure abelian gauge theory with a complex coupling $\\beta$ and apply the concept of Generalized Lefschetz thimbles. We propose to simulate the theory on the union of the tangential manifolds to the thimbles. We construct a local Metropolis-type algorithm, that is constrained to a specific tangential manifold. We also discuss how, starting from this result, successive subleading tangential manifolds can be taken into account via a reweighting approach. We demonstrate the algorithm on $U(1)$ gauge theory in 1+1 dimensions and investigate the residual sign problem.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simulating gauge theories on Lefschetz Thimbles\",\"authors\":\"J. Pawlowski, M. Scherzer, C. Schmidt, Felix Ziegler, F. Ziesch'e\",\"doi\":\"10.22323/1.363.0223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lefschetz thimbles have been proposed recently as a possible solution to the complex action problem (sign problem) in Monte Carlo simulations. Here we discuss pure abelian gauge theory with a complex coupling $\\\\beta$ and apply the concept of Generalized Lefschetz thimbles. We propose to simulate the theory on the union of the tangential manifolds to the thimbles. We construct a local Metropolis-type algorithm, that is constrained to a specific tangential manifold. We also discuss how, starting from this result, successive subleading tangential manifolds can be taken into account via a reweighting approach. We demonstrate the algorithm on $U(1)$ gauge theory in 1+1 dimensions and investigate the residual sign problem.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Lefschetz顶针最近被提出作为蒙特卡罗模拟中复杂动作问题(符号问题)的一种可能的解决方案。本文讨论了具有复耦合的纯阿贝尔规范理论,并应用了广义Lefschetz顶针的概念。我们提出将切向流形的并集理论模拟为顶针。我们构造了一个局部的metropolis型算法,该算法被约束于一个特定的切流形。我们还讨论了如何从这个结果出发,通过重新加权的方法来考虑连续次超前切向流形。在1+1维的$U(1)$规范理论上证明了该算法,并研究了剩余符号问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating gauge theories on Lefschetz Thimbles
Lefschetz thimbles have been proposed recently as a possible solution to the complex action problem (sign problem) in Monte Carlo simulations. Here we discuss pure abelian gauge theory with a complex coupling $\beta$ and apply the concept of Generalized Lefschetz thimbles. We propose to simulate the theory on the union of the tangential manifolds to the thimbles. We construct a local Metropolis-type algorithm, that is constrained to a specific tangential manifold. We also discuss how, starting from this result, successive subleading tangential manifolds can be taken into account via a reweighting approach. We demonstrate the algorithm on $U(1)$ gauge theory in 1+1 dimensions and investigate the residual sign problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信