M. Cè, T. Harris, H. Meyer, A. Steinberg, Arianna Toniato
{"title":"晶格QCD中夸克-胶子等离子体产生光子的速率","authors":"M. Cè, T. Harris, H. Meyer, A. Steinberg, Arianna Toniato","doi":"10.1103/PHYSREVD.102.091501","DOIUrl":null,"url":null,"abstract":"We calculate the thermal rate of real-photon production in the quark-gluon plasma at a temperature of $T=254$ MeV using lattice QCD. The calculation is based on the difference between the spatially transverse and longitudinal parts of the polarization tensor, which has the advantage of falling off rapidly at large frequencies. We obtain this linear combination in the time-momentum representation from lattice QCD with two flavors of quarks in the continuum limit with a precision of about two parts per mille. Applying a theoretically motivated fit ansatz for the associated spectral function, we obtain values for the photon rate that are in line with QCD weak-coupling calculations; for photon momenta $ 1.0\\leq k[{\\rm GeV}]\\leq 1.4$, our non-perturbative results constrain the rate to be no larger than twice the weak-coupling prediction. We also provide a physics interpretation of the electromagnetic spectral functions valid for all frequencies and momenta.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Rate of photon production in the quark-gluon plasma from lattice QCD\",\"authors\":\"M. Cè, T. Harris, H. Meyer, A. Steinberg, Arianna Toniato\",\"doi\":\"10.1103/PHYSREVD.102.091501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate the thermal rate of real-photon production in the quark-gluon plasma at a temperature of $T=254$ MeV using lattice QCD. The calculation is based on the difference between the spatially transverse and longitudinal parts of the polarization tensor, which has the advantage of falling off rapidly at large frequencies. We obtain this linear combination in the time-momentum representation from lattice QCD with two flavors of quarks in the continuum limit with a precision of about two parts per mille. Applying a theoretically motivated fit ansatz for the associated spectral function, we obtain values for the photon rate that are in line with QCD weak-coupling calculations; for photon momenta $ 1.0\\\\leq k[{\\\\rm GeV}]\\\\leq 1.4$, our non-perturbative results constrain the rate to be no larger than twice the weak-coupling prediction. We also provide a physics interpretation of the electromagnetic spectral functions valid for all frequencies and momenta.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.102.091501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.102.091501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rate of photon production in the quark-gluon plasma from lattice QCD
We calculate the thermal rate of real-photon production in the quark-gluon plasma at a temperature of $T=254$ MeV using lattice QCD. The calculation is based on the difference between the spatially transverse and longitudinal parts of the polarization tensor, which has the advantage of falling off rapidly at large frequencies. We obtain this linear combination in the time-momentum representation from lattice QCD with two flavors of quarks in the continuum limit with a precision of about two parts per mille. Applying a theoretically motivated fit ansatz for the associated spectral function, we obtain values for the photon rate that are in line with QCD weak-coupling calculations; for photon momenta $ 1.0\leq k[{\rm GeV}]\leq 1.4$, our non-perturbative results constrain the rate to be no larger than twice the weak-coupling prediction. We also provide a physics interpretation of the electromagnetic spectral functions valid for all frequencies and momenta.