{"title":"Theoretical and practical progresses in the HAL QCD method","authors":"S. Aoki","doi":"10.22323/1.363.0020","DOIUrl":null,"url":null,"abstract":"In this report, we discuss some theoretical and practical progresses in the HAL QCD potential method. We first clarify the issue of the derivative expansion for the non-local potential in the HAL QCD method. As the non-local potential in the original literature is not uniquely defined, we propose a procedure to define a non-local potential from NBS wave functions in terms of the derivative expansion. We then demonstrate how this definition works by using quantum mechanics with a separable potential. Secondly we discuss an issue of Hermiticity of the HAL QCD potential. Since the NBS wav functions are not orthogonal to each other in general, the HAL QCD potential is necessary to be non-Hermitian. We consider the next-to-leading order potential, which can be made Hermitian exactly by the change of variables. In general we can also make the higher order HAL QCD potential Hermitian order by order in the derivative expansion. An explicit example on how the procedure works is given for lattice QCD calculations. Finally we discuss how we can extract the HAL QCD potential from the NBS wave function in the boosted system. An explicit formula for this is derived.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this report, we discuss some theoretical and practical progresses in the HAL QCD potential method. We first clarify the issue of the derivative expansion for the non-local potential in the HAL QCD method. As the non-local potential in the original literature is not uniquely defined, we propose a procedure to define a non-local potential from NBS wave functions in terms of the derivative expansion. We then demonstrate how this definition works by using quantum mechanics with a separable potential. Secondly we discuss an issue of Hermiticity of the HAL QCD potential. Since the NBS wav functions are not orthogonal to each other in general, the HAL QCD potential is necessary to be non-Hermitian. We consider the next-to-leading order potential, which can be made Hermitian exactly by the change of variables. In general we can also make the higher order HAL QCD potential Hermitian order by order in the derivative expansion. An explicit example on how the procedure works is given for lattice QCD calculations. Finally we discuss how we can extract the HAL QCD potential from the NBS wave function in the boosted system. An explicit formula for this is derived.