A lattice formulation of the Atiyah-Patodi-Singer index

H. Fukaya, Naoki Kawai, Yoshiyuki Matsuki, M. Mori, K. Nakayama, T. Onogi, S. Yamaguchi
{"title":"A lattice formulation of the Atiyah-Patodi-Singer index","authors":"H. Fukaya, Naoki Kawai, Yoshiyuki Matsuki, M. Mori, K. Nakayama, T. Onogi, S. Yamaguchi","doi":"10.22323/1.363.0149","DOIUrl":null,"url":null,"abstract":"Atiyah-Singer index theorem on a lattice without boundary is well understood owing to the seminal work by Hasenfratz et al. But its extension to the system with boundary (the so-called Atiyah- Patodi-Singer index theorem), which plays a crucial role in T-anomaly cancellation between bulk- and edge-modes in 3+1 dimensional topological matters, is known only in the continuum theory and no lattice realization has been made so far. In this work, we try to non-perturbatively define an alternative index from the lattice domain-wall fermion in 3+1 dimensions. We will show that this new index in the continuum limit, converges to the Atiyah-Patodi-Singer index defined on a manifold with boundary, which coincides with the surface of the domain-wall.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Atiyah-Singer index theorem on a lattice without boundary is well understood owing to the seminal work by Hasenfratz et al. But its extension to the system with boundary (the so-called Atiyah- Patodi-Singer index theorem), which plays a crucial role in T-anomaly cancellation between bulk- and edge-modes in 3+1 dimensional topological matters, is known only in the continuum theory and no lattice realization has been made so far. In this work, we try to non-perturbatively define an alternative index from the lattice domain-wall fermion in 3+1 dimensions. We will show that this new index in the continuum limit, converges to the Atiyah-Patodi-Singer index defined on a manifold with boundary, which coincides with the surface of the domain-wall.
Atiyah-Patodi-Singer指数的晶格形式
由于Hasenfratz等人的开创性工作,无界格上的Atiyah-Singer指标定理得到了很好的理解。但它对有边界系统的推广(即所谓的Atiyah- Patodi-Singer指数定理),在3+1维拓扑物质的体模和边模之间的t异常对消中起着至关重要的作用,仅在连续统理论中已知,迄今尚未有晶格实现。在这项工作中,我们尝试在3+1维中非摄动地定义晶格域壁费米子的替代指标。我们将证明这个新的指数在连续体极限下收敛于定义在具有边界的流形上的Atiyah-Patodi-Singer指数,该指数与畴壁表面一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信