arXiv: Algebraic Topology最新文献

筛选
英文 中文
Homotopy Gerstenhaber formality of Davis–Januszkiewicz spaces Davis-Januszkiewicz空间的同伦Gerstenhaber形式
arXiv: Algebraic Topology Pub Date : 2019-07-10 DOI: 10.4310/HHA.2021.v23.n2.a17
M. Franz
{"title":"Homotopy Gerstenhaber formality of Davis–Januszkiewicz spaces","authors":"M. Franz","doi":"10.4310/HHA.2021.v23.n2.a17","DOIUrl":"https://doi.org/10.4310/HHA.2021.v23.n2.a17","url":null,"abstract":"A homotopy Gerstenhaber structure on a differential graded algebra is essentially a family of operations defining a multiplication on its bar construction. We prove that the normalized singular cochain algebra of a Davis-Januszkiewicz space is formal as a homotopy Gerstenhaber algebra, for any coefficient ring. This generalizes a recent result by the author about classifying spaces of tori and also strengthens the well-known dga formality result for Davis-Januszkiewicz spaces due to the author and Notbohm-Ray. As an application, we determine the cohomology rings of free and based loop spaces of Davis-Januszkiewicz spaces.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74281334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories 因式分解同调、∞范畴及拓扑场论讲座
arXiv: Algebraic Topology Pub Date : 2019-06-28 DOI: 10.1007/978-3-030-61163-7
Araminta Amabel, A. Kalmykov, L. Muller, Hiro Tanaka
{"title":"Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories","authors":"Araminta Amabel, A. Kalmykov, L. Muller, Hiro Tanaka","doi":"10.1007/978-3-030-61163-7","DOIUrl":"https://doi.org/10.1007/978-3-030-61163-7","url":null,"abstract":"","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90302756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Farrell–Jones conjecture for normally poly-free groups 通常无多聚群的法雷尔-琼斯猜想
arXiv: Algebraic Topology Pub Date : 2019-06-04 DOI: 10.1090/proc/15357
B. Bruck, Dawid Kielak, Xiaolei Wu
{"title":"The Farrell–Jones conjecture for normally poly-free groups","authors":"B. Bruck, Dawid Kielak, Xiaolei Wu","doi":"10.1090/proc/15357","DOIUrl":"https://doi.org/10.1090/proc/15357","url":null,"abstract":"We prove the $K$- and $L$-theoretic Farrell--Jones Conjecture with coefficients in an additive category for every normally poly-free group, in particular for even Artin groups of FC-type, and for all groups of the form $Artimes mathbb{Z}$ where $A$ is a right-angled Artin group. Our proof relies on the work of Bestvina-Fujiwara-Wigglesworth on the Farrell--Jones Conjecture for free-by-cyclic groups.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"395 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89056048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
On the homology of the commutator subgroup of the pure braid group 纯辫群的交换子群的同调性
arXiv: Algebraic Topology Pub Date : 2019-05-13 DOI: 10.1090/proc/15404
Andrea Bianchi
{"title":"On the homology of the commutator subgroup of the pure braid group","authors":"Andrea Bianchi","doi":"10.1090/proc/15404","DOIUrl":"https://doi.org/10.1090/proc/15404","url":null,"abstract":"We study the homology of $[P_n,P_n]$, the commutator subgroup of the pure braid group on $n$ strands, and show that $H_l([P_n,P_n])$ contains a free abelian group of infinite rank for all $1leq lleq n-2$. As a consequence we determine the cohomological dimension of $[P_n,P_n]$: for $ngeq 2$ we have $mathrm{cd}([P_n,P_n])=n-2$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87387505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flag Bott manifolds of general Lie type and their equivariant cohomology rings 一般Lie型的Flag - Bott流形及其等变上同调环
arXiv: Algebraic Topology Pub Date : 2019-05-01 DOI: 10.4310/HHA.2020.V22.N1.A21
S. Kaji, S. Kuroki, Eunjeong Lee, D. Suh
{"title":"Flag Bott manifolds of general Lie type and their equivariant cohomology rings","authors":"S. Kaji, S. Kuroki, Eunjeong Lee, D. Suh","doi":"10.4310/HHA.2020.V22.N1.A21","DOIUrl":"https://doi.org/10.4310/HHA.2020.V22.N1.A21","url":null,"abstract":"In this article we introduce flag Bott manifolds of general Lie type as the total spaces of iterated flag bundles. They generalize the notion of flag Bott manifolds and generalized Bott manifolds, and admit nice torus actions. We calculate the torus equivariant cohomology rings of flag Bott manifolds of general Lie type.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82559831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
On certain complex surface singularities 在某些复曲面奇点上
arXiv: Algebraic Topology Pub Date : 2019-04-29 DOI: 10.15476/ELTE.2018.041
Gergo Pintér
{"title":"On certain complex surface singularities","authors":"Gergo Pintér","doi":"10.15476/ELTE.2018.041","DOIUrl":"https://doi.org/10.15476/ELTE.2018.041","url":null,"abstract":"The thesis deals with holomorphic germs $ Phi: (mathbb{C}^2, 0) to (mathbb{C}^3,0) $ singular only at the origin, with a special emphasis on the distinguished class of finitely determined germs. The results are published in two articles (arXiv:1404.2853 and arXiv:1902.01229), joint with Andras Nemethi. In Chapter 3 of the thesis we study the associated immersion $ S^3 looparrowright S^5 $, while Chapter 5 contains an algorithm providing the Milnor fibre boundary of the non-isolated hypersurface singularity determined by the image of $ Phi $. These results create bridges between different areas of complex singularity theory and immersion theory. The background of these topics is summerized in Chapter 1, 2 and 4.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85960331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Relative singular value decomposition and applications to LS-category 相对奇异值分解及其在ls范畴中的应用
arXiv: Algebraic Topology Pub Date : 2019-04-22 DOI: 10.1016/J.LAA.2019.07.034
E. Mac'ias-Virg'os, M. J. Pereira-Sáez, Daniel Tanr'e
{"title":"Relative singular value decomposition and applications to LS-category","authors":"E. Mac'ias-Virg'os, M. J. Pereira-Sáez, Daniel Tanr'e","doi":"10.1016/J.LAA.2019.07.034","DOIUrl":"https://doi.org/10.1016/J.LAA.2019.07.034","url":null,"abstract":"","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83731623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Coassembly is a homotopy limit map 共集是一个同伦极限映射
arXiv: Algebraic Topology Pub Date : 2019-04-11 DOI: 10.2140/AKT.2020.5.373
Cary Malkiewich, M. Merling
{"title":"Coassembly is a homotopy limit map","authors":"Cary Malkiewich, M. Merling","doi":"10.2140/AKT.2020.5.373","DOIUrl":"https://doi.org/10.2140/AKT.2020.5.373","url":null,"abstract":"We prove a claim by Williams that the coassembly map is a homotopy limit map. As an application, we show that the homotopy limit map for the coarse version of equivariant $A$-theory agrees with the coassembly map for bivariant $A$-theory that appears in the statement of the topological Riemann-Roch theorem.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81300356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A factorization homology primer 一个分解同源引物
arXiv: Algebraic Topology Pub Date : 2019-03-26 DOI: 10.1201/9781351251624-2
David Ayala, J. Francis
{"title":"A factorization homology primer","authors":"David Ayala, J. Francis","doi":"10.1201/9781351251624-2","DOIUrl":"https://doi.org/10.1201/9781351251624-2","url":null,"abstract":"This chapter amalgamates some foundational developments and calculations in factorization homology.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"65 4 1","pages":"39-101"},"PeriodicalIF":0.0,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86450357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
The realizability of some finite-length modules over the Steenrod algebra by spaces 若干有限长模在Steenrod代数上的空间可实现性
arXiv: Algebraic Topology Pub Date : 2019-03-25 DOI: 10.2140/AGT.2020.20.2129
Andrew H. Baker, Tilman Bauer
{"title":"The realizability of some finite-length modules over the Steenrod algebra by spaces","authors":"Andrew H. Baker, Tilman Bauer","doi":"10.2140/AGT.2020.20.2129","DOIUrl":"https://doi.org/10.2140/AGT.2020.20.2129","url":null,"abstract":"The Joker is an important finite cyclic module over the mod-$2$ Steenrod algebra $mathcal A$. We show that the Joker, its first two iterated Steenrod doubles, and their linear duals are realizable by spaces of as low a dimension as the instability condition of modules over the Steenrod algebra permits. This continues and concludes prior work by the first author and yields a complete characterization of which versions of Jokers are realizable by spaces or spectra and which are not. The constructions involve sporadic phenomena in homotopy theory ($2$-compact groups, topological modular forms) and may be of independent interest.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73608470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信