{"title":"纯辫群的交换子群的同调性","authors":"Andrea Bianchi","doi":"10.1090/proc/15404","DOIUrl":null,"url":null,"abstract":"We study the homology of $[P_n,P_n]$, the commutator subgroup of the pure braid group on $n$ strands, and show that $H_l([P_n,P_n])$ contains a free abelian group of infinite rank for all $1\\leq l\\leq n-2$. As a consequence we determine the cohomological dimension of $[P_n,P_n]$: for $n\\geq 2$ we have $\\mathrm{cd}([P_n,P_n])=n-2$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the homology of the commutator subgroup of the pure braid group\",\"authors\":\"Andrea Bianchi\",\"doi\":\"10.1090/proc/15404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the homology of $[P_n,P_n]$, the commutator subgroup of the pure braid group on $n$ strands, and show that $H_l([P_n,P_n])$ contains a free abelian group of infinite rank for all $1\\\\leq l\\\\leq n-2$. As a consequence we determine the cohomological dimension of $[P_n,P_n]$: for $n\\\\geq 2$ we have $\\\\mathrm{cd}([P_n,P_n])=n-2$.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the homology of the commutator subgroup of the pure braid group
We study the homology of $[P_n,P_n]$, the commutator subgroup of the pure braid group on $n$ strands, and show that $H_l([P_n,P_n])$ contains a free abelian group of infinite rank for all $1\leq l\leq n-2$. As a consequence we determine the cohomological dimension of $[P_n,P_n]$: for $n\geq 2$ we have $\mathrm{cd}([P_n,P_n])=n-2$.