若干有限长模在Steenrod代数上的空间可实现性

Andrew H. Baker, Tilman Bauer
{"title":"若干有限长模在Steenrod代数上的空间可实现性","authors":"Andrew H. Baker, Tilman Bauer","doi":"10.2140/AGT.2020.20.2129","DOIUrl":null,"url":null,"abstract":"The Joker is an important finite cyclic module over the mod-$2$ Steenrod algebra $\\mathcal A$. We show that the Joker, its first two iterated Steenrod doubles, and their linear duals are realizable by spaces of as low a dimension as the instability condition of modules over the Steenrod algebra permits. This continues and concludes prior work by the first author and yields a complete characterization of which versions of Jokers are realizable by spaces or spectra and which are not. The constructions involve sporadic phenomena in homotopy theory ($2$-compact groups, topological modular forms) and may be of independent interest.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The realizability of some finite-length modules over the Steenrod algebra by spaces\",\"authors\":\"Andrew H. Baker, Tilman Bauer\",\"doi\":\"10.2140/AGT.2020.20.2129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Joker is an important finite cyclic module over the mod-$2$ Steenrod algebra $\\\\mathcal A$. We show that the Joker, its first two iterated Steenrod doubles, and their linear duals are realizable by spaces of as low a dimension as the instability condition of modules over the Steenrod algebra permits. This continues and concludes prior work by the first author and yields a complete characterization of which versions of Jokers are realizable by spaces or spectra and which are not. The constructions involve sporadic phenomena in homotopy theory ($2$-compact groups, topological modular forms) and may be of independent interest.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AGT.2020.20.2129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AGT.2020.20.2129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Joker是mod-$2$ Steenrod代数$ $数学A$上一个重要的有限循环模。我们证明了Joker,它的前两个迭代Steenrod双精度,以及它们的线性对偶在Steenrod代数上模的不稳定性条件允许的低维空间中是可实现的。这继续并总结了第一作者之前的工作,并得出了一个完整的特征,即哪些版本的小丑可以通过空间或光谱实现,哪些不能。这些构造涉及同伦理论中的零星现象($2$紧群,拓扑模形式),并且可能具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The realizability of some finite-length modules over the Steenrod algebra by spaces
The Joker is an important finite cyclic module over the mod-$2$ Steenrod algebra $\mathcal A$. We show that the Joker, its first two iterated Steenrod doubles, and their linear duals are realizable by spaces of as low a dimension as the instability condition of modules over the Steenrod algebra permits. This continues and concludes prior work by the first author and yields a complete characterization of which versions of Jokers are realizable by spaces or spectra and which are not. The constructions involve sporadic phenomena in homotopy theory ($2$-compact groups, topological modular forms) and may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信