On certain complex surface singularities

Gergo Pintér
{"title":"On certain complex surface singularities","authors":"Gergo Pintér","doi":"10.15476/ELTE.2018.041","DOIUrl":null,"url":null,"abstract":"The thesis deals with holomorphic germs $ \\Phi: (\\mathbb{C}^2, 0) \\to (\\mathbb{C}^3,0) $ singular only at the origin, with a special emphasis on the distinguished class of finitely determined germs. The results are published in two articles (arXiv:1404.2853 and arXiv:1902.01229), joint with Andras Nemethi. In Chapter 3 of the thesis we study the associated immersion $ S^3 \\looparrowright S^5 $, while Chapter 5 contains an algorithm providing the Milnor fibre boundary of the non-isolated hypersurface singularity determined by the image of $ \\Phi $. These results create bridges between different areas of complex singularity theory and immersion theory. The background of these topics is summerized in Chapter 1, 2 and 4.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15476/ELTE.2018.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The thesis deals with holomorphic germs $ \Phi: (\mathbb{C}^2, 0) \to (\mathbb{C}^3,0) $ singular only at the origin, with a special emphasis on the distinguished class of finitely determined germs. The results are published in two articles (arXiv:1404.2853 and arXiv:1902.01229), joint with Andras Nemethi. In Chapter 3 of the thesis we study the associated immersion $ S^3 \looparrowright S^5 $, while Chapter 5 contains an algorithm providing the Milnor fibre boundary of the non-isolated hypersurface singularity determined by the image of $ \Phi $. These results create bridges between different areas of complex singularity theory and immersion theory. The background of these topics is summerized in Chapter 1, 2 and 4.
在某些复曲面奇点上
本文讨论了全纯胚$ \ φ: (\mathbb{C}^ 2,0) $到(\mathbb{C}^3,0) $在原点上奇异的问题,特别强调了有限确定胚的特殊类别。该研究结果与Andras Nemethi联合发表在两篇文章(arXiv:1404.2853和arXiv:1902.01229)中。在论文的第三章中,我们研究了相关的浸入式$ S^3 \looparrowright $ S^5 $,而第五章包含了一个算法,提供了由$ \Phi $像确定的非孤立超曲面奇点的Milnor纤维边界。这些结果在复杂奇点理论和沉浸理论的不同领域之间建立了桥梁。第一章、第二章和第四章总结了这些课题的背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信