Homotopy Gerstenhaber formality of Davis–Januszkiewicz spaces

M. Franz
{"title":"Homotopy Gerstenhaber formality of Davis–Januszkiewicz spaces","authors":"M. Franz","doi":"10.4310/HHA.2021.v23.n2.a17","DOIUrl":null,"url":null,"abstract":"A homotopy Gerstenhaber structure on a differential graded algebra is essentially a family of operations defining a multiplication on its bar construction. We prove that the normalized singular cochain algebra of a Davis-Januszkiewicz space is formal as a homotopy Gerstenhaber algebra, for any coefficient ring. This generalizes a recent result by the author about classifying spaces of tori and also strengthens the well-known dga formality result for Davis-Januszkiewicz spaces due to the author and Notbohm-Ray. As an application, we determine the cohomology rings of free and based loop spaces of Davis-Januszkiewicz spaces.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2021.v23.n2.a17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A homotopy Gerstenhaber structure on a differential graded algebra is essentially a family of operations defining a multiplication on its bar construction. We prove that the normalized singular cochain algebra of a Davis-Januszkiewicz space is formal as a homotopy Gerstenhaber algebra, for any coefficient ring. This generalizes a recent result by the author about classifying spaces of tori and also strengthens the well-known dga formality result for Davis-Januszkiewicz spaces due to the author and Notbohm-Ray. As an application, we determine the cohomology rings of free and based loop spaces of Davis-Januszkiewicz spaces.
Davis-Januszkiewicz空间的同伦Gerstenhaber形式
微分梯度代数上的同伦格斯滕哈伯结构本质上是在它的棒状结构上定义乘法的一组运算。证明了Davis-Januszkiewicz空间的归一化奇异协链代数对于任何系数环都可以形式化为同伦Gerstenhaber代数。这推广了作者最近关于环面空间分类的结果,并加强了作者和nobohm - ray对Davis-Januszkiewicz空间的著名的dga形式性结果。作为应用,我们确定了Davis-Januszkiewicz空间中自由和基环空间的上同环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信