{"title":"Correction.","authors":"","doi":"10.1080/13813455.2024.2432763","DOIUrl":"https://doi.org/10.1080/13813455.2024.2432763","url":null,"abstract":"","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1"},"PeriodicalIF":2.5,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela Elisa Hirsch, Mariana Migliorini Parisi, Leo Anderson Meira Martins, Lílian Corrêa Costa-Beber, Cláudia Marlise Balbinotti Andrade, Florencia Mária Barbé Tuana, Silvia Resende Terra, Tassiane Dos Santos Ferrão, Roger Wagner, Tatiana Emanuelli, Fátima Theresinha Costa Rodrigues Guma
{"title":"Cytotoxic properties of <i>Thuya occidentalis</i> hydroalcoholic extract on androgen unresponsive prostate cancer cells.","authors":"Gabriela Elisa Hirsch, Mariana Migliorini Parisi, Leo Anderson Meira Martins, Lílian Corrêa Costa-Beber, Cláudia Marlise Balbinotti Andrade, Florencia Mária Barbé Tuana, Silvia Resende Terra, Tassiane Dos Santos Ferrão, Roger Wagner, Tatiana Emanuelli, Fátima Theresinha Costa Rodrigues Guma","doi":"10.1080/13813455.2024.2430488","DOIUrl":"https://doi.org/10.1080/13813455.2024.2430488","url":null,"abstract":"<p><p><b>Background:</b> Androgen independent phase in prostate cancer (PCa) commonly limits the therapeutic efficacy. <i>Thuya occidentalis</i> through its main active compound, α-thujone, appears to be an option, considering its anti-proliferative, anti-metastatic and pro-apoptotic effects on hepatocellular carcinoma. However, studies on PCa are limited.</p><p><p><b>Objective:</b> To evaluate if <i>T. occidentalis</i> could be useful against androgen responsive and unresponsive PCa cells.</p><p><p><b>Methods:</b> Androgen responsive (LNCaP) and unresponsive (DU145 and PC3) cell lines were exposed to <i>T. occidentalis</i> hydroalcoholic extract (0.05 mL/mL) for different periods. Further, α-thujone was measured in the extract and tested in the cell lines.</p><p><p><b>Results:</b> <i>T. occidentalis</i> and α-thujone showed the highest cytotoxicity on LNCaP cells. In androgen unresponsive cells, <i>T. occidentalis</i> decreased cell viability and density, and promoted apoptosis, necrosis and cell cycle arrest, possibly associated with Cav-1 downregulation. The α-thujone present in the extract significantly LNCaP cells density, but did not affect DU145 and PC3 cells, suggesting that other compounds may also be cytotoxic to androgen unresponsive cells.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-11"},"PeriodicalIF":2.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bartholomew I C Brai, Ruth Ometere Joseph, Titilope Ruth Komolafe, Busayo Elizabeth Amosun, Olamide Olajusi Crown, Kayode Komolafe, Ifedayo Victor Ogungbe
{"title":"Neem seed oil ameliorates diabetic phenotype by suppressing redox imbalance, dyslipidaemia and pro-inflammatory mediators in a rodent model of type 2 diabetes.","authors":"Bartholomew I C Brai, Ruth Ometere Joseph, Titilope Ruth Komolafe, Busayo Elizabeth Amosun, Olamide Olajusi Crown, Kayode Komolafe, Ifedayo Victor Ogungbe","doi":"10.1080/13813455.2024.2426497","DOIUrl":"https://doi.org/10.1080/13813455.2024.2426497","url":null,"abstract":"<p><p>The neem plant (<i>Azadirachta indica</i>) has popular ethnomedicinal applications. The anti-diabetic potential and mechanism of neem seed oil (NSO) in a rodent model of type 2 diabetes mellitus was evaluated in the present study. Experimentally-induced diabetic animals were administered NSO (200 and 400 mg/kg) or metformin (150 mg/kg) orally for 30 days, with some animals serving as positive and negative controls. NSO significantly (<i>p</i> < .05) reversed diabetes-induced impaired glucose metabolism, dyslipidaemia, and oxido-inflammatory imbalances typified by changes in the NADH/NAD+ ratio (<i>p</i> < .001) and increases in the mRNA or protein levels of C-reactive protein, 4-hydroxynonenal, and pro-inflammatory cytokines (TNF-α and Il-1β) among others in the hepatic or pancreatic tissues of diabetic animals. The histological evaluation of the pancreatic tissue corroborated the protective effect of NSO. The findings showed that the antidiabetic effect of NSO proceeded through its hypolipidemic effect and modulation of redox and inflammatory signalling events in the tissues of animals.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-15"},"PeriodicalIF":2.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Triglycerides and metabolic syndrome: from basic to mechanism - A narrative review.","authors":"Gayathri S Prabhu, Preethi Lavina Concessao","doi":"10.1080/13813455.2024.2426496","DOIUrl":"10.1080/13813455.2024.2426496","url":null,"abstract":"<p><strong>Content: </strong>The impact of triglyceride levels is important to understand the changes in metabolism and structure. With an increase in obesity and hyperlipidemia due to diet; cardiovascular and neuronal structural changes have been shown to be more distinct.</p><p><strong>Objective: </strong>This review aims to discuss the pathophysiology and mechanisms involved in increased levels of triglycerides leading to vascular impairment, metabolic syndrome and cognitive decline.</p><p><strong>Methods: </strong>The literature search was performed using the PubMed, Google scholar and Scopus databases, among which 180 articles were shortlisted based on key words, abstract, materials and methods and results. Among these 74 articles have been cited for the review.</p><p><strong>Results and discussion: </strong>The review discusses the impact of hypertriglyceridemia on metabolism, triglyceride storage, and neurovascular integrity, highlighting mechanisms contributing to vascular dysfunction, metabolic syndrome, and cognitive deterioration.</p><p><strong>Conclusion: </strong>Elevated triglyceride levels are a key factor in altering metabolic pathways and structural integrity in cardiovascular and neuronal systems. This review provides insights into the mechanisms underlying metabolic disorders caused by elevated triglyceride levels, It highlights the need for further studies to provide more supportive evidence and address existing limitations in understanding these changes.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-9"},"PeriodicalIF":2.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AMPK activation; a potential strategy to mitigate TKI-induced cardiovascular toxicity.","authors":"Nasser Safaie, Gholamreza Idari, Diba Ghasemi, Mobasher Hajiabbasi, Vahid Alivirdiloo, Shahab Masoumi, Mahdi Zavvar, Ziba Majidi, Yousef Faridvand","doi":"10.1080/13813455.2024.2426494","DOIUrl":"https://doi.org/10.1080/13813455.2024.2426494","url":null,"abstract":"<p><p>The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionised cancer treatment, yet concerns regarding cardiovascular toxicity have surfaced. This piece delves into the interplay between AMP-activated protein kinase (AMPK) signalling and TKI-induced cardiovascular toxicity. The study unravels the intricate relationship between AMPK activation and TKI-induced cardiovascular toxicity, aiming to ascertain whether AMPK can play a strategic role in mitigating adverse effects. Beyond unravelling mechanistic insights, the research sets the stage for future therapeutic approaches, envisioning AMPK activation as a pivotal connection for balancing effective cancer treatment with cardiovascular well-being. As research advances, the potential of AMPK activation not only addresses challenges in TKI-induced cardiovascular toxicity but also shapes the future landscape of personalised anticancer therapies. The article explores the mechanisms of TKI-induced toxicity, AMPK's impact on cardiovascular health, and the potential therapeutic implications of AMPK activation in alleviating TKI-associated toxicities.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-13"},"PeriodicalIF":2.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heba A Abdel-Hamid, Manar Fouli Gaber Ibrahim, Doaa Mohamed Elroby Ali, Elshymaa A Abdel-Hakeem
{"title":"Beclin1/LC3II/P62 autophagy pathway activation is involved in the protective action of C-peptide against prostate injury in a rat model of type 1 diabetes.","authors":"Heba A Abdel-Hamid, Manar Fouli Gaber Ibrahim, Doaa Mohamed Elroby Ali, Elshymaa A Abdel-Hakeem","doi":"10.1080/13813455.2024.2422317","DOIUrl":"https://doi.org/10.1080/13813455.2024.2422317","url":null,"abstract":"<p><p>One of the undesirable complications of diabetes is sexual dysfunctions in males which may affect their fertility. This research aims to study the effect of C-peptide administration on the prostate of diabetic rats and focusing on exploring the role of the autophagy pathway in diabetic prostate and whether it is involved in C-peptide action. Forty adult male Wistar albino rats were separated into control group, diabetic group, diabetic + C-peptide and diabetic + C-peptide + 3-Methyladenine (autophagy inhibitor). Serum metabolic parameters and prostatic specific antigen (PSA) were measured. Markers of oxidative stress, inflammation, fibrosis, cell proliferation and cell autophagy were evaluated in prostate tissues using biochemical, western blotting and immunohistochemical techniques. C-peptide administration ameliorated the effects of diabetes on the prostate through its hypoglycaemic, antioxidant, anti-inflammatory, and antiproliferative effects which were reversed with autophagy inhibition. Thus, we concluded that C-peptide prevented the effects of diabetes on the prostate through stimulation of the autophagy pathway.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-13"},"PeriodicalIF":2.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulating eEF2 and eEF2K in skeletal muscle by exercise.","authors":"Kia Salimi, Masoomeh Alvandi, Mahdi Saberi Pirouz, Kamran Rakhshan, Glyn Howatson","doi":"10.1080/13813455.2023.2164898","DOIUrl":"10.1080/13813455.2023.2164898","url":null,"abstract":"<p><p>Skeletal muscle is a flexible and adaptable tissue that strongly responds to exercise training. The skeletal muscle responds to exercise by increasing muscle protein synthesis (MPS) when energy is available. One of protein synthesis's major rate-limiting and critical regulatory steps is the translation elongation pathway. The process of translation elongation in skeletal muscle is highly regulated. It requires elongation factors that are intensely affected by various physiological stimuli such as exercise and the total available energy of cells. Studies have shown that exercise involves the elongation pathway by numerous signalling pathways. Since the elongation pathway, has been far less studied than the other translation steps, its comprehensive prospect and quantitative understanding remain in the dark. This study highlights the current understanding of the effect of exercise training on the translation elongation pathway focussing on the molecular factors affecting the pathway, including Ca<sup>2+</sup>, AMPK, PKA, mTORC1/P70S6K, MAPKs, and myostatin. We further discussed the mode and volume of exercise training intervention on the translation elongation pathway.<b>What is the topic of this review?</b> This review summarises the impacts of exercise training on the translation elongation pathway in skeletal muscle focussing on eEF2 and eEF2K.<b>What advances does it highlight?</b> This review highlights mechanisms and factors that profoundly influence the translation elongation pathway and argues that exercise might modulate the response. This review also combines the experimental observations focussing on the regulation of translation elongation during and after exercise. The findings widen our horizon to the notion of mechanisms involved in muscle protein synthesis (MPS) through translation elongation response to exercise training.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"503-514"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10525385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevser Tanbek, Umit Yılmaz, Mehmet Gul, Ahmet Koç, Suleyman Sandal
{"title":"Effects of central FGF21 infusion on the glucose homeostasis in rats (brain-pancreas axis).","authors":"Kevser Tanbek, Umit Yılmaz, Mehmet Gul, Ahmet Koç, Suleyman Sandal","doi":"10.1080/13813455.2023.2166964","DOIUrl":"10.1080/13813455.2023.2166964","url":null,"abstract":"<p><strong>Introduction: </strong>Glucose homeostasis is a physiological process mediated by a variety of hormones. Fibroblast growth factor (FGF) 21 is a protein expressed in the liver, adipose tissue, muscle and pancreas and exerts actions in multiple targets including adipose, liver, pancreas and hypothalamus. The aim of this study was to examine the possible involvement of FGF21 in pancreatic and central control of glucose by measuring reflective changes in the release of insulin and glucagon.</p><p><strong>Methods: </strong>Thirty adult male Wistar Albino rats were divided; Control, PD + aCSF, PD + FGF21 groups (<i>n =</i> 10). Effects of intracerebroventricular (icv) FGF21 administration to pancreatic denervated (PD) rats. Agouti-related protein (AgRP), Pro-opiomelanocortin (POMC) levels and blood glucose homeostasis were investigated.</p><p><strong>Results: </strong>Administration of FGF21 to 3rd ventricle increased food consumption but body weight didn't change significantly. AgRP level increased, pancreatic insulin levels increased, and glucagon level decreased.</p><p><strong>Conclusion: </strong>Central FGF21 administration is effective in regulating blood glucose homeostasis by increasing the amount and efficiency of insulin and changing glucose use.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"515-522"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10531078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amera Morad Foad, Alshimaa Hafez, Wael Youssef, Ahmed Elsharawy Ahmed, Ali Mohamad Altaher
{"title":"Irisin expression and <i>FNDC5</i> (rs3480) gene polymorphism in type 2 diabetic patients with and without CAD.","authors":"Amera Morad Foad, Alshimaa Hafez, Wael Youssef, Ahmed Elsharawy Ahmed, Ali Mohamad Altaher","doi":"10.1080/13813455.2023.2173785","DOIUrl":"10.1080/13813455.2023.2173785","url":null,"abstract":"<p><strong>Background: </strong>Irisin was found to correlate with coronary artery disease (CAD) in diabetic patients. This study investigated the association of irisin and <i>FNDC5</i> (SNP rs3480) with the presence and severity of CAD in T2DM.</p><p><strong>Methods: </strong>This cross-sectional study included 100 patients with T2DM divided into two groups, DM group (<i>n</i> = 50), including patients without CAD and CAD group (<i>n</i> = 50), including those confirmed to have CAD by coronary angiography. Irisin was measured. SNP rs3480 genotyping of <i>FNDC5</i> was done.</p><p><strong>Results: </strong>Irisin levels were significantly lower in the CAD group (<i>p</i> < 0.001). The CAD group had significantly higher HbA1c and lower HDL (<i>p</i> < 0.001). Patients with controlled DM had significantly higher irisin levels (<i>p</i> < 0.001). single nucleotide polymorphism (SNP) rs3480 was not associated with irisin levels, and the <i>FNDC5</i> rs3480 AA reference allele was significantly associated with significant CAD.</p><p><strong>Conclusion: </strong>Irisin appears to be protective against developing CAD in diabetic patients. Irisin level was an independent predictor of significant CAD in diabetic patients combined with the <i>FNDC5</i> rs3480 genotype.</p><p><strong>Clinical trial registration number: </strong>NCT04957823.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"523-528"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10642199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"hsa_circ_0000047 targeting miR-6720-5p/CYB5R2 axis alleviates inflammation and angiogenesis in diabetic retinopathy.","authors":"Lin Liao, Jinpeng Chen, Sheng Peng","doi":"10.1080/13813455.2023.2190055","DOIUrl":"10.1080/13813455.2023.2190055","url":null,"abstract":"<p><p><b>Context:</b> Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM). Circular RNAs (circRNAs) act as key regulators of DR development by regulating inflammation and angiogenesis.<b>Objective:</b> This study aimed to elucidate the function and mechanism of hsa_circ_0000047 in DR.<b>Materials and methods:</b> High glucose (HG) was used to induce human retinal microvascular endothelial cells (hRMECs) to construct a DR model in vitro. Qualitative real-time polymerase chain reaction (qRT-PCR) or western blotting were used to detected the levels of hsa_circ_0000047, miR-6720-5p, and CYB5R2 in DR and HG-indeced hRMECs. Cell functional experiments were performed to detect the change of viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Besides, the correlation between miR-6720-5p and hsa_circ_0000047/CYB5R2 was confirmed by luciferase assay and Pearson correlation analysis.<b>Results:</b> hsa_circ_0000047 and CYB5R2 were downregulated in DR, whereas miR-6720-5p was upregulated in DR. Cell functional experiments showed that hsa_circ_0000047 overexpression restrained viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Regarding mechanism, hsa_circ_0000047 could sponge miR-6720-5p to regulate CYB5R2 expression in hRMECs. Additionally, CYB5R2 knockdown reversed the effects of hsa_circ_0000047 overexpression on HG-induced hRMECs.<b>Conclusion:</b> Our study revealed that hsa_circ_0000047 alleviated inflammation and angiogenesis in HG-induced hRMECs by targeting the miR-6720-5p/CYB5R2 axis, which may be a novel biomarker for DR therapy.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"537-545"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}