脂滴的生长、融合和降解:脂滴调节蛋白的研究进展。

IF 2.5 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Yusong Ge, Yu Cao, Feng Li, Jiaxin Wang, Yuhao Liu, Wenjin Guo, Juxiong Liu, Shoupeng Fu
{"title":"脂滴的生长、融合和降解:脂滴调节蛋白的研究进展。","authors":"Yusong Ge, Yu Cao, Feng Li, Jiaxin Wang, Yuhao Liu, Wenjin Guo, Juxiong Liu, Shoupeng Fu","doi":"10.1080/13813455.2024.2388779","DOIUrl":null,"url":null,"abstract":"<p><p><b>Context</b>: An adequate supply of energy is essential for the proper functioning of all life activities in living organisms. As organelles that store neutral lipids, lipid droplets (LDs) are involved in the synthesis and metabolism of lipids in cells and are also an important source of energy supply.</p><p><p><b>Methods and mechanisms</b>: A comprehensive summary of the literature was first carried out to screen for relevant proteins affecting the morphological size of LDs.The size of milk fat globules (MFGs) is directly influenced by the morphological size of LDs, which also controls the energy storage capacity of LDs. In this review, we detail the progress of research into the role of some protein in regulating the morphological size of LDs.</p><p><p><b>Conclusion</b>: It has been discovered that the number of protein are involved in the control of LD growth and degradation, such as Rab18-mediated local synthesis of triacylglycerol (TAG), cell death-inducing DFF45-like effector family proteins (CIDEs)-mediated atypical fusion between LDs, Stomatin protein-mediated LD fusion and autophagy-related proteins (ATGs)-mediated autophagic degradation of LDs. However, more studies are needed in the future to enrich the network of mechanisms that regulate the morphological size of LDs.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth, fusion and degradation of lipid droplets: advances in lipid droplet regulatory protein.\",\"authors\":\"Yusong Ge, Yu Cao, Feng Li, Jiaxin Wang, Yuhao Liu, Wenjin Guo, Juxiong Liu, Shoupeng Fu\",\"doi\":\"10.1080/13813455.2024.2388779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Context</b>: An adequate supply of energy is essential for the proper functioning of all life activities in living organisms. As organelles that store neutral lipids, lipid droplets (LDs) are involved in the synthesis and metabolism of lipids in cells and are also an important source of energy supply.</p><p><p><b>Methods and mechanisms</b>: A comprehensive summary of the literature was first carried out to screen for relevant proteins affecting the morphological size of LDs.The size of milk fat globules (MFGs) is directly influenced by the morphological size of LDs, which also controls the energy storage capacity of LDs. In this review, we detail the progress of research into the role of some protein in regulating the morphological size of LDs.</p><p><p><b>Conclusion</b>: It has been discovered that the number of protein are involved in the control of LD growth and degradation, such as Rab18-mediated local synthesis of triacylglycerol (TAG), cell death-inducing DFF45-like effector family proteins (CIDEs)-mediated atypical fusion between LDs, Stomatin protein-mediated LD fusion and autophagy-related proteins (ATGs)-mediated autophagic degradation of LDs. However, more studies are needed in the future to enrich the network of mechanisms that regulate the morphological size of LDs.</p>\",\"PeriodicalId\":8331,\"journal\":{\"name\":\"Archives of Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Physiology and Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13813455.2024.2388779\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2024.2388779","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:充足的能量供应对生物体内所有生命活动的正常运行至关重要。作为储存中性脂质的细胞器,脂滴(LDs)参与细胞内脂质的合成和代谢,也是能量供应的重要来源:首先对文献进行了全面总结,筛选出影响 LDs 形态大小的相关蛋白质。乳脂球(MFGs)的大小直接受 LDs 形态大小的影响,而 LDs 的形态大小也控制着 LDs 的储能能力。在这篇综述中,我们详细介绍了一些蛋白质在调节乳脂球形态大小中作用的研究进展:结论:研究发现,许多蛋白质参与了LDs生长和降解的调控,如Rab18介导的三酰甘油(TAG)的局部合成、细胞死亡诱导DFF45样效应物家族蛋白(CIDEs)介导的LDs之间的非典型融合、Stomatin蛋白介导的LDs融合以及自噬相关蛋白(ATGs)介导的LDs自噬降解。然而,未来还需要更多的研究来丰富调控LDs形态大小的机制网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth, fusion and degradation of lipid droplets: advances in lipid droplet regulatory protein.

Context: An adequate supply of energy is essential for the proper functioning of all life activities in living organisms. As organelles that store neutral lipids, lipid droplets (LDs) are involved in the synthesis and metabolism of lipids in cells and are also an important source of energy supply.

Methods and mechanisms: A comprehensive summary of the literature was first carried out to screen for relevant proteins affecting the morphological size of LDs.The size of milk fat globules (MFGs) is directly influenced by the morphological size of LDs, which also controls the energy storage capacity of LDs. In this review, we detail the progress of research into the role of some protein in regulating the morphological size of LDs.

Conclusion: It has been discovered that the number of protein are involved in the control of LD growth and degradation, such as Rab18-mediated local synthesis of triacylglycerol (TAG), cell death-inducing DFF45-like effector family proteins (CIDEs)-mediated atypical fusion between LDs, Stomatin protein-mediated LD fusion and autophagy-related proteins (ATGs)-mediated autophagic degradation of LDs. However, more studies are needed in the future to enrich the network of mechanisms that regulate the morphological size of LDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Physiology and Biochemistry
Archives of Physiology and Biochemistry ENDOCRINOLOGY & METABOLISM-PHYSIOLOGY
CiteScore
6.90
自引率
3.30%
发文量
21
期刊介绍: Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders. The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications. Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics: -Dysregulation of hormone receptors and signal transduction -Contribution of gene variants and gene regulatory processes -Impairment of intermediary metabolism at the cellular level -Secretion and metabolism of peptides and other factors that mediate cellular crosstalk -Therapeutic strategies for managing metabolic diseases Special issues dedicated to topics in the field will be published regularly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信