{"title":"Isolation and characterization of Salmonella enteritidis bacteriophage Salmp-p7 isolated from slaughterhouse effluent and its application in food","authors":"Mengge Chen, Tong Yu, Xiangyu Cao, Jiaqi Pu, Deshu Wang, Hongkuan Deng","doi":"10.1007/s00203-024-04206-x","DOIUrl":"10.1007/s00203-024-04206-x","url":null,"abstract":"<div><p><i>Salmonella enteritidis</i> is one of the most common pathogens that cause foodborne disease outbreaks and food spoilage, which seriously threatens human health. Bacteriophages have shown broad application prospects in controlling harmful microorganisms during food processing and preservation due to their ability to specifically infect bacteria. In this study, <i>Salmonella enteritidis</i> bacteriophage Salmp-p7 was isolated and characterized from slaughterhouse wastewater. Transmission electron microscopy (TEM) analysis showed that Salmp-p7 belonged to the <i>Siphoviridae</i> family and was active against <i>Salmonella enteritidis</i> and <i>Escherichia coli</i>. Whole genome sequence analysis showed that Salmp-p7 was a lytic bacteriophage with a total length of 60,066 bp of sequence. Salmp-p7 has a short incubation period and a long burst duration, with a burst volume of 55 PFU/cell and a good lysis effect. It can maintain a stable state within the temperature range of 30–60℃ and pH range of 4–12 and has the potential for application in food. In vitro, antimicrobial curves and inhibition of biofilm removal experiments showed that Salmp-p7 could effectively inhibit and eliminate <i>Salmonella enteritidis.</i> The application of Salmp-p7 to the whole liquid of infected eggs resulted in a significant reduction of viable bacteria. And Salmp-p7 has high stability and lytic activity and has the potential to become a new biological control agent for <i>Salmonella enteritidis</i> in eggs<i>.</i></p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biopolymer-based oral films integrated with probiotic active compounds for improved health applications","authors":"Sinem Tunçer Çağlayan","doi":"10.1007/s00203-024-04207-w","DOIUrl":"10.1007/s00203-024-04207-w","url":null,"abstract":"<div><p>Orally dissolving films (ODFs) have emerged as a versatile platform that combines convenience, efficacy, and patient compliance. In this study, the cell-free supernatant of the oral probiotic <i>Streptococcus salivarius</i> M18 was incorporated into various biopolymer-based ODF formulations, evaluated for demolding, fragility, and flexibility. The combination of carboxymethyl cellulose, sodium alginate, and glycerol successfully formed stable films. The films were characterized by weight, thickness, pH, and disintegration times. Fourier-transform infrared spectroscopy (FTIR) was used to analyze ODF content and release profiles in simulated saliva. Unique absorption peaks in the cell-free product-incorporated ODF samples confirmed the integration of bacterial proteins, lipids, and nucleic acids into the ODF matrix. The biological activity of the ODF carrying M18 bioactive products was assessed by its inhibitory effect on the growth of <i>Streptococcus mutans</i>, a pathogen linked to dental plaque and cavities. Additionally, the anti-proliferative effect on cancer epithelial cells was demonstrated. This study show that probiotic products can be integrated into bio-based thin films without losing activity, making this delivery platform promising for local and potentially systemic effects.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chinese advances in understanding and managing genitourinary tract infections caused by Mycoplasma genitalium, Mycoplasma hominis, and Ureaplasma urealyticum","authors":"Yanyan Qiu, Siyi Mao, Xianqi Li, Yinan Chen, Wenxin Chen, Yating Wen, Peng Liu","doi":"10.1007/s00203-024-04204-z","DOIUrl":"10.1007/s00203-024-04204-z","url":null,"abstract":"<div><p><i>Mycoplasma genitalium</i>,<i> Ureaplasma urealyticum</i> and <i>Mycoplasma hominis</i> are <i>bacterial</i> pathogens found in the genitourinary tract, implicated in a range of infections. In women, these infections including pelvic inflammatory disease, vaginitis, infertility, and cervical cancer, while in men, they can cause non-gonococcal urethritis, prostate cancer, among other conditions. These infections are a global health concern, with China identified as a country with a high prevalence. This review provides a comprehensive overview of the epidemiology, causative factors, and diagnostic methods for these three <i>Mycoplasma</i> species with in China. The rise of multi-drug resistance, driven by antibiotics overuse, poses a significant challenge to treatment, complicating patient management. These <i>Mycoplasma</i> species employ unique adhesion mechanisms that trigger a cascade of signal transduction, culminating to inflammatory responses, tissue damage, and the release of toxic metabolites. Here, we delineate the mechanisms of underlying <i>Mycoplasma</i> resistance and propose key therapeutic strategies for these three mycoplasmas in China. This includes a summary of effective antibiotic treatment strategies, and potential combinations of therapeutic to improve cure rates, and a discussion of potential therapeutic approaches using traditional Chinese medicine.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Replacing Glycerol-3-Phosphate Dehydrogenase with NADH Oxidase: Effects on Glucose Fermentation and Product Formation in Saccharomyces cerevisiae","authors":"Sadat Mohamed Rezk Khattab, Takashi Watanabe","doi":"10.1007/s00203-024-04187-x","DOIUrl":"10.1007/s00203-024-04187-x","url":null,"abstract":"<div><p>The NADH/NAD<sup>+</sup> balance plays a critical role in regulating cellular and metabolic pathways. In <i>Saccharomyces cerevisiae</i>, glycerol-3-phosphate dehydrogenase (<i>Sc</i>GPD) enzymes are essential for NADH homeostasis, glycerol biosynthesis, and osmotic stress adaptation. This study investigates the replacement of <i>Sc</i>GPD isoforms with the water-forming NADH oxidase from <i>Lactococcus lactis</i> (<i>Ll</i>noxE) and its effects on 10% glucose fermentation dynamics in minimal medium under microaerobic conditions. We engineered <i>S. cerevisiae</i> strains by individually or sequentially deleting or substituting <i>Sc</i>GPD isoforms with <i>Ll</i>noxE, generating strains with varying NADH oxidation levels, fermentation rates, and byproduct formation. The engineered strains exhibited three distinct fermentation profiles: faster strains (∆GPD2 and ∆GPD1,2), five medium-speed strains (native, ∆GPD1, <i>Ll</i>noxE/∆GPD1, <i>Ll</i>noxE/∆GPD2, and <i>Ll</i>noxE with GPD), and three slower strains (<i>Ll</i>noxE/∆GPD1,2, <i>Ll</i>noxE/∆GPD1-∆GPD2, and <i>Ll</i>noxE/∆GPD2-∆GPD1). Increased NADH oxidation correlated strongly with higher acetic acid production, which inhibited cell growth and reduced fermentation speed, especially when glycerol biosynthesis was abolished. For instance, <i>Ll</i>noxE/ΔGPD1 reduced glycerol production by 88% and increased ethanol yield by 6.2%, despite a 9% increase in acetic acid production. This study underscores the importance of NADH oxidation in optimizing fermentation efficiency and metabolic balance in <i>S. cerevisiae</i> strains lacking GPD during glucose fermentation.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prions: structure, function, evolution, and disease","authors":"Clara Casey, Roy D. Sleator","doi":"10.1007/s00203-024-04200-3","DOIUrl":"10.1007/s00203-024-04200-3","url":null,"abstract":"<div><p>Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ebthag M. Awad, Nagwa A. Abdallah, Mona M. K. Shehata, Hala A. Farrag
{"title":"Detection and molecular insights into the azurin gene expression post– gamma irradiation in P. aeruginosa","authors":"Ebthag M. Awad, Nagwa A. Abdallah, Mona M. K. Shehata, Hala A. Farrag","doi":"10.1007/s00203-024-04195-x","DOIUrl":"10.1007/s00203-024-04195-x","url":null,"abstract":"<div><p>Azurin, a secondary metabolite from <i>Pseudomonas aeruginosa</i>, has attracted much attention owing to its valuable therapeutic and biological applications. This work aimed to study and chartly maximize the azurin production process using different doses of gamma irradiation (5–400 Gy) in <i>P. aeruginosa</i> isolates. Seventy-six <i>P. aeruginosa</i> isolates were sourced from 135 environmental samples and 35 clinical bacterial isolates with the following descending order: 35 isolates (46%) from clinical samples, 26 isolates (34%) from water samples, and 15 isolates (20%) from soil samples. The disc diffusion technique was used for antimicrobial susceptibility testing, revealing that the multidrug-resistant (MDR) rate among all collected isolates according to the criteria determined by Clinical and Laboratory Standards Institute (CLSI) was 54 (71%). The genomic experimental results revealed that only 37 MDR isolates tested positive for the azurin gene, as detected by the PCR product at 446 bp. These findings were further supported by FTIR analysis, which revealed peaks around 1636.96 cm<sup>− 1</sup>, indicating a prominent α-helix secondary structure of azurin in these isolates. Related to their pathogenicity and antibiotic resistance, isolates from clinical origin exhibited the higher azurin gene expression level. Besides, this study confirmed the potency of gamma radiation exposure at 50 and 100 Gy significantly increased the azurin expression levels in three tested clinical isolates (<i>P</i> ≤ 0.05), with a maximum fold expression level of 63.55 compared to the non-irradiated samples. In conclusion, low doses of gamma irradiation effectively enhanced expression level of a secondary metabolite azurin, providing a considerable benefit for subsequent purification processes in both biological and medical applications.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Umar Saeed, Shazia Ahmed, Arunabh Choudhury, Afzal Hussain, Mohamed F. Alajmi, Taj Mohammad, Md. Imtaiyaz Hassan
{"title":"Discovering novel inhibitors of RfaH from Klebsiella pneumoniae to combat antimicrobial resistance","authors":"Mohammad Umar Saeed, Shazia Ahmed, Arunabh Choudhury, Afzal Hussain, Mohamed F. Alajmi, Taj Mohammad, Md. Imtaiyaz Hassan","doi":"10.1007/s00203-024-04192-0","DOIUrl":"10.1007/s00203-024-04192-0","url":null,"abstract":"<div><p>RfaH is a crucial protein involved in anti-termination of transcription, which is necessary for spreading virulence in certain types of bacteria, such as <i>Klebsiella pneumoniae</i> and <i>Escherichia coli</i>. RfaH works by interacting directly with RNA polymerase and ribosomes, which activates the production of certain components needed for the bacteria's survival. Targeting RfaH offers a novel approach to hindering bacterial transcription and virulence. In this study, we performed computational screening of the IMPPAT 2.0 database consisting of 17,967 natural compounds, which were filtered based on Lipinski’s RO5 filter, selecting only those that had druglike properties. We performed virtual screening on the remaining 11,708 druglike phytochemicals and selected those having strong binding affinity and specificity, leading to the identification of top hits. These hits were further evaluated based on their pharmacokinetic features like PAINS filter, pharmacokinetic properties, pan assay interference, and interaction analysis. Finally, three phytochemicals, Withanone, Withametelin B, and Ixocarpanolide were identified as potential inhibitors for RfaH, having appreciable affinity of − 9.0, − 9.0 and − 8.8 kcal/mol specificity towards the binding pocket of RfaH. An all-atom molecular dynamic simulation was carried out for 500 ns to examine the structural flexibility and dynamic stability of RfaH and RfaH-ligand complexes, which revealed that complexes maintained stability throughout the given duration. All the selected compounds have shown drug-like properties as predicted from ADMET analysis and their physicochemical parameters. These compounds selectively bind to the crucial binding sites of RfaH and interact with important residues, preventing its binding with RNAP which can further be exploited as potential lead molecules against RfaH, providing a promising therapeutic avenue for combating antibiotic resistance.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Gangaraj, Aditi Kundu, G. Prakash, Amrita Das, A. Nagaraja, Deeba Kamil
{"title":"Profiling of bioactive secondary metabolites from Aspergillus niger against a guava wilt pathogen, Fusarium oxysporum f. sp. psidii","authors":"R. Gangaraj, Aditi Kundu, G. Prakash, Amrita Das, A. Nagaraja, Deeba Kamil","doi":"10.1007/s00203-024-04199-7","DOIUrl":"10.1007/s00203-024-04199-7","url":null,"abstract":"<div><p>Guava wilt is a devastating soil-borne disease that causes significant losses in guava orchards. Management of the disease is very challenging once established in the field. Therefore, there is a need to explore for an effective, economical, and sustainable management strategies. <i>Aspergillus niger</i>, a bio-control fungus, has been demonstrated effectiveness against various soil-borne pathogens including guava wilt pathogens. It produces a diverse hydrolysing enzymes and secondary metabolites. However, no extensive study has been undertaken to profile the secondary metabolites of <i>A. niger</i>. In this investigation, we assessed eleven <i>A. niger</i> strains (AN-1 to AN-11) against four guava wilt pathogens (<i>Fusarium oxysporum</i> f. sp. <i>psidii</i>, <i>F. falciforme</i>, <i>F. chlamydosporum</i>, and <i>F. verticillioides</i>) using a dual culture assay. All strains demonstrated effective by restricting the mycelial growth of pathogens, among them AN-11 displayed maximum inhibition of 86.33%, followed by the AN-3 (84.27%). The UPLC-QToF-ESIMS analysis was undertaken to explore the secondary metabolites of AN-11 responsible for inhibiting <i>F. oxysporum</i> f. sp. <i>psidii.</i> The crude extracts were obtained from <i>F. oxysporum</i> f. sp. <i>psidii</i>, AN-11 and their interaction using ethyl acetate as a solvent. After evaporating, the crude fractions were analysed using UPLC-QToF-ESIMS with an Acquity UPLC and a SCIEX SelexION Triple QuadTM 5500 System. From the ethyl acetate extract of <i>F. oxysporum</i> f. sp. <i>psidii</i>, approximately 14 metabolites involved in pathogenicity were identified. Similarly, analysis of AN-11 crude extract revealed 25 metabolites, and notably, 41 metabolites were identified during the interaction between AN-11 and <i>F. oxysporum</i> f. sp. <i>psidii</i>, including kotanin, isokotanin A, aurofusarin, kojic acid, pyranonigrin, aurasperone F, hexylitaconic acid, asperazine, bicoumanigrin, chloramphenicol, cephalosporin C, fusarin C, zearalonone, fonsecin B, malformin A, and others. Among these, 21 metabolites were produced only during the interaction and have antimicrobial properties. This study highlights the significant potential of the AN-11 strain in generating a diverse array of non-volatile secondary metabolites with antimicrobial properties. These metabolites could be further extracted and investigated for their efficacy against other soil borne pathogens and potentially developed into formulations for controlling plant diseases.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei Li, Qiwen Huang, Yanling Xie, Zhu Zhu, Senlin Zhan, Jianzhou Meng, Han Liu
{"title":"JIB-04, an inhibitor of Jumonji histone demethylase as a potent antitubercular agent against Mycobacterium tuberculosis","authors":"Pei Li, Qiwen Huang, Yanling Xie, Zhu Zhu, Senlin Zhan, Jianzhou Meng, Han Liu","doi":"10.1007/s00203-024-04197-9","DOIUrl":"10.1007/s00203-024-04197-9","url":null,"abstract":"<div><p>The increasing drug resistance of <i>Mycobacterium tuberculosis</i> (Mtb), coupled with the limited availability of effective anti-tuberculosis medications, poses significant challenges for the management and treatment of tuberculosis (TB). Globally, non-tuberculous mycobacteria (NTM) infections are increasing, with <i>Mycobacterium avium</i> complex and <i>Mycobacterium abscessus</i> (Mab) being the most common in labs and having few treatment options. There’s an urgent need for innovative therapies against Mtb and NTM that are effective and have minimal side effects. The study evaluated the in vitro efficacy of JIB-04, a Jumonji histone demethylase inhibitor, against Mtb, Mab, and multidrug-resistant (MDR) clinical isolates using the minimum inhibitory concentration (MIC) assay. We also determined the minimum bactericidal concentrations (MBCs) of JIB-04 against the H37Rv and H37Ra strains. A time-kill assay was performed to assess the comparative efficacy of JIB-04 and rifampicin against H37Ra. Additionally, the study investigated the impact of JIB-04 on biofilm formation and the persistence of H37Ra over extended periods. Our findings demonstrated a substantial inhibitory effect of JIB-04 on the growth of Mab, Mtb, and MDR clinical isolates. JIB-04 showed bactericidal effects at twice the MIC, outperforming rifampicin in reducing viable cell counts over 8 days. It showed moderate cytotoxicity to mammalian cells but effectively inhibited biofilm formation. In our anoxia model, JIB-04 induced a significant, concentration-dependent reduction in bacterial load. JIB-04 is a promising candidate for the treatment of MDR tuberculosis.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential role of the antimicrobial peptide Tachyplesin III in regulating nontypeable Haemophilus influenzae-induced inflammation in airway epithelial cells","authors":"Pornpimon Jantaruk, Sittiruk Roytrakul, Anchalee Sistayanarain, Duangkamol Kunthalert","doi":"10.1007/s00203-024-04196-w","DOIUrl":"10.1007/s00203-024-04196-w","url":null,"abstract":"<div><p>The respiratory bacterium nontypeable (non-encapsulated) <i>Haemophilus influenzae</i> (NTHi) is a key pathogen driving exacerbations in chronic obstructive pulmonary disease (COPD), and is associated with an excessive airway inflammation. Increasing issues with tolerance and unwanted side effects of existing pharmaceuticals present an urgent need for new, effective and minimally toxic therapeutic options. This study aimed to investigate the potential role of Tachyplesin III, an antimicrobial peptide derived from the hemolysates of Southeast Asian horseshoe crabs, in regulating NTHi-induced airway inflammation. The results revealed that Tachyplesin III effectively inhibited the production of IL-1β in NTHi-stimulated human lung epithelial cells (A549), without causing cytotoxic effects. Additionally, Tachyplesin III significantly reduced TNF-α, PGE<sub>2</sub> and NO production in NTHi-stimulated A549 cells. Moreover, this peptide inhibited the nuclear translocation of the NF-κB p65 subunit in NTHi-stimulated lung epithelial cells. It also reduced transcriptional activation of NF-κB target genes, as shown by lower mRNA levels of IL-1β, TNF-α, COX-2 and iNOS, which correlated with corresponding decreases in their protein expression. Tachyplesin III peptide also inhibited pro-IL-1β and NLRP3 protein expression and prevented NTHi-induced caspase-1 cleavage and IL-1β maturation. Together, our findings demonstrate that Tachyplesin III effectively reduced NTHi-mediated inflammation via the NF-κB/NLRP3 inflammasome signaling pathway, highlighting its important anti-inflammatory activity. Complementing these findings, in silico analysis revealed key pharmacokinetic and toxicological attributes, establishing a foundational understanding of Tachyplesin III as a promising therapeutic agent for managing NTHi-associated inflammation.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}