{"title":"A comprehensive review of advanced strategies to combat antimicrobial resistance","authors":"Bikramaditya Behera, Rajrattan Singh, Komal Sharma, Ansh Rai, Shreya Singh, Biji Balan","doi":"10.1007/s00203-025-04464-3","DOIUrl":null,"url":null,"abstract":"<div><p>Antimicrobial Resistance (AMR) is a growing global issue, as many first-line antibiotics are becoming less effective due to their overuse and misuse. Recent advances in novel antibiotic derivatives reveal mechanisms designed to counteract AMR. Even though conventional antimicrobial therapy has failed, no new antibiotic class has been developed in the past decade. Consequently, various innovative alternative tactics have been discovered to counteract drug-resistant pathogens. The article reviews novel approaches in combating AMR, which include antimicrobial peptides, phage therapy, CRISPR-Cas gene editing, nanomaterial-based antimicrobials, immunomodulatory agents, innovative physicochemical strategies, and combination therapy. Collectively, these approaches utilize cutting edge technologies that mark a shift from the traditional paradigm of antibiotics to integrated next-generation therapeutics. AMR remains a serious issue despite all of the noted advancements, and hence, a collaborative and multidisciplinary action involving researchers, healthcare professionals, policymakers, and pharmaceutical sector is urgently required. The emergence and burden of AMR can be better tackled by inventiveness, cooperation, and proactive approaches.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04464-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial Resistance (AMR) is a growing global issue, as many first-line antibiotics are becoming less effective due to their overuse and misuse. Recent advances in novel antibiotic derivatives reveal mechanisms designed to counteract AMR. Even though conventional antimicrobial therapy has failed, no new antibiotic class has been developed in the past decade. Consequently, various innovative alternative tactics have been discovered to counteract drug-resistant pathogens. The article reviews novel approaches in combating AMR, which include antimicrobial peptides, phage therapy, CRISPR-Cas gene editing, nanomaterial-based antimicrobials, immunomodulatory agents, innovative physicochemical strategies, and combination therapy. Collectively, these approaches utilize cutting edge technologies that mark a shift from the traditional paradigm of antibiotics to integrated next-generation therapeutics. AMR remains a serious issue despite all of the noted advancements, and hence, a collaborative and multidisciplinary action involving researchers, healthcare professionals, policymakers, and pharmaceutical sector is urgently required. The emergence and burden of AMR can be better tackled by inventiveness, cooperation, and proactive approaches.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.