Annual review of immunology最新文献

筛选
英文 中文
B Cell Function in the Tumor Microenvironment. B细胞在肿瘤微环境中的功能。
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-101220-015603
Stephanie M Downs-Canner, Jeremy Meier, Benjamin G Vincent, Jonathan S Serody
{"title":"B Cell Function in the Tumor Microenvironment.","authors":"Stephanie M Downs-Canner,&nbsp;Jeremy Meier,&nbsp;Benjamin G Vincent,&nbsp;Jonathan S Serody","doi":"10.1146/annurev-immunol-101220-015603","DOIUrl":"https://doi.org/10.1146/annurev-immunol-101220-015603","url":null,"abstract":"<p><p>The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"169-193"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9087355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 58
Sex Differences in Immunity. 免疫力的性别差异。
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2022-04-26 Epub Date: 2022-01-05 DOI: 10.1146/annurev-immunol-101320-125133
Nicole M Wilkinson, Ho-Chung Chen, Melissa G Lechner, Maureen A Su
{"title":"Sex Differences in Immunity.","authors":"Nicole M Wilkinson, Ho-Chung Chen, Melissa G Lechner, Maureen A Su","doi":"10.1146/annurev-immunol-101320-125133","DOIUrl":"10.1146/annurev-immunol-101320-125133","url":null,"abstract":"<p><p>Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"75-94"},"PeriodicalIF":26.9,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805670/pdf/nihms-1858368.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9704494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. 先天传感器触发调节细胞死亡以对抗细胞内感染。
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-101320-011235
Kengo Nozaki, Lupeng Li, Edward A Miao
{"title":"Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection.","authors":"Kengo Nozaki,&nbsp;Lupeng Li,&nbsp;Edward A Miao","doi":"10.1146/annurev-immunol-101320-011235","DOIUrl":"https://doi.org/10.1146/annurev-immunol-101320-011235","url":null,"abstract":"<p><p>Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"469-498"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614550/pdf/nihms-1843149.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9349395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Tissue Immunity in the Bladder. 膀胱组织免疫。
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-101220-032117
Georgina S Bowyer, Kevin W Loudon, Ondrej Suchanek, Menna R Clatworthy
{"title":"Tissue Immunity in the Bladder.","authors":"Georgina S Bowyer, Kevin W Loudon, Ondrej Suchanek, Menna R Clatworthy","doi":"10.1146/annurev-immunol-101220-032117","DOIUrl":"10.1146/annurev-immunol-101220-032117","url":null,"abstract":"<p><p>The bladder is a major component of the urinary tract, an organ system that expels metabolic waste and excess water, which necessitates proximity to the external environment and its pathogens. It also houses a commensal microbiome. Therefore, its tissue immunity must resist pathogen invasion while maintaining tolerance to commensals. Bacterial infection of the bladder is common, with half of women globally experiencing one or more episodes of cystitis in their lifetime. Despite this, our knowledge of bladder immunity, particularly in humans, is incomplete. Here we consider the current view of tissue immunity in the bladder, with a focus on defense against infection. The urothelium has robust immune functionality, and its defensive capabilities are supported by resident immune cells, including macrophages, dendritic cells, natural killer cells, and γδ T cells. We discuss each in turn and consider why adaptive immune responses are often ineffective in preventing recurrent infection, as well as areas of priority for future research.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"499-523"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9157185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary Landscapes of Host-Virus Arms Races. 宿主-病毒军备竞赛的进化景观。
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-072621-084422
Jeannette L Tenthorey, Michael Emerman, Harmit S Malik
{"title":"Evolutionary Landscapes of Host-Virus Arms Races.","authors":"Jeannette L Tenthorey,&nbsp;Michael Emerman,&nbsp;Harmit S Malik","doi":"10.1146/annurev-immunol-072621-084422","DOIUrl":"https://doi.org/10.1146/annurev-immunol-072621-084422","url":null,"abstract":"<p><p>Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"271-294"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10817866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. 不同的细胞趋向性和对甲病毒感染的免疫反应。
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-101220-014952
Natasha M Kafai, Michael S Diamond, Julie M Fox
{"title":"Distinct Cellular Tropism and Immune Responses to Alphavirus Infection.","authors":"Natasha M Kafai,&nbsp;Michael S Diamond,&nbsp;Julie M Fox","doi":"10.1146/annurev-immunol-101220-014952","DOIUrl":"https://doi.org/10.1146/annurev-immunol-101220-014952","url":null,"abstract":"<p><p>Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"615-649"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350340/pdf/nihms-1913153.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9774416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Resistance Mechanisms to Anti-PD Cancer Immunotherapy. 抗pd肿瘤免疫治疗的耐药机制
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-070621-030155
Matthew D Vesely, Tianxiang Zhang, Lieping Chen
{"title":"Resistance Mechanisms to Anti-PD Cancer Immunotherapy.","authors":"Matthew D Vesely, Tianxiang Zhang, Lieping Chen","doi":"10.1146/annurev-immunol-070621-030155","DOIUrl":"10.1146/annurev-immunol-070621-030155","url":null,"abstract":"<p><p>The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"45-74"},"PeriodicalIF":26.9,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9639547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instructive Cues of Thymic T Cell Selection. 胸腺T细胞选择的指导性提示。
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-101320-022432
Magali Irla
{"title":"Instructive Cues of Thymic T Cell Selection.","authors":"Magali Irla","doi":"10.1146/annurev-immunol-101320-022432","DOIUrl":"https://doi.org/10.1146/annurev-immunol-101320-022432","url":null,"abstract":"A high diversity of αβ T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 1","pages":"95-119"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49224370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Emerging Paradigms in Type 2 Immunity. 2型免疫的新范式。
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-101320-030339
H. Hammad, Nincy Debeuf, H. Aegerter, A. Brown, B. Lambrecht
{"title":"Emerging Paradigms in Type 2 Immunity.","authors":"H. Hammad, Nincy Debeuf, H. Aegerter, A. Brown, B. Lambrecht","doi":"10.1146/annurev-immunol-101320-030339","DOIUrl":"https://doi.org/10.1146/annurev-immunol-101320-030339","url":null,"abstract":"A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 1","pages":"443-467"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41533386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Functional Hallmarks of Healthy Macrophage Responses: Their Regulatory Basis and Disease Relevance. 健康巨噬细胞反应的功能标志:它们的调节基础和疾病相关性
IF 29.7 1区 医学
Annual review of immunology Pub Date : 2022-04-26 DOI: 10.1146/annurev-immunol-101320-031555
Katherine M Sheu, Alexander Hoffmann
{"title":"Functional Hallmarks of Healthy Macrophage Responses: Their Regulatory Basis and Disease Relevance.","authors":"Katherine M Sheu, Alexander Hoffmann","doi":"10.1146/annurev-immunol-101320-031555","DOIUrl":"10.1146/annurev-immunol-101320-031555","url":null,"abstract":"<p><p>Macrophages are first responders for the immune system. In this role, they have both effector functions for neutralizing pathogens and sentinel functions for alerting other immune cells of diverse pathologic threats, thereby initiating and coordinating a multipronged immune response. Macrophages are distributed throughout the body-they circulate in the blood, line the mucosal membranes, reside within organs, and survey the connective tissue. Several reviews have summarized their diverse roles in different physiological scenarios and in the initiation or amplification of different pathologies. In this review, we propose that both the effector and the sentinel functions of healthy macrophages rely on three hallmark properties: response specificity, context dependence, and stimulus memory. When these hallmark properties are diminished, the macrophage's biological functions are impaired, which in turn results in increased risk for immune dysregulation, manifested by immune deficiency or autoimmunity. We review the evidence and the molecular mechanisms supporting these functional hallmarks.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"40 ","pages":"295-321"},"PeriodicalIF":29.7,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074967/pdf/nihms-1878081.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9271460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信