Annual review of immunologyPub Date : 2025-04-01Epub Date: 2025-03-04DOI: 10.1146/annurev-immunol-082323-031852
Chrysante S Iliakis, Stefania Crotta, Andreas Wack
{"title":"The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair.","authors":"Chrysante S Iliakis, Stefania Crotta, Andreas Wack","doi":"10.1146/annurev-immunol-082323-031852","DOIUrl":"10.1146/annurev-immunol-082323-031852","url":null,"abstract":"<p><p>As the site of gas exchange, the lung is critical for organismal survival. It is also subject to continual environmental insults inflicted by pathogens, particles, and toxins. Sometimes, these insults result in structural damage and the initiation of an innate immune response. Operating in parallel, the immune response aims to eliminate the threat, while the repair process ensures continual physiological function of the lung. The inflammatory response and repair processes are thus inextricably linked in time and space but are often studied in isolation. Here, we review the interplay of innate immune cells and nonimmune cells during lung insult and repair. We highlight how cellular cross talk can fine-tune the circuitry of the immune response, how innate immune cells can facilitate or antagonize proper organ repair, and the prolonged changes to lung immunity and physiology that can result from acute immune responses and repair processes.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"395-422"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of immunologyPub Date : 2025-04-01Epub Date: 2025-02-27DOI: 10.1146/annurev-immunol-082323-120757
Anne Kathrin Lösslein, Philipp Henneke
{"title":"Macrophage Differentiation and Metabolic Adaptation in Mycobacterial Infections.","authors":"Anne Kathrin Lösslein, Philipp Henneke","doi":"10.1146/annurev-immunol-082323-120757","DOIUrl":"10.1146/annurev-immunol-082323-120757","url":null,"abstract":"<p><p>The adaptation of macrophages-the most common tissue-resident immune cells-to metabolic and microbial cues with high local variability is essential for the maintenance of organ integrity. In homeostasis, macrophages show largely predictable tissue-specific differentiation, as recently revealed by multidimensional methods. However, chronic infections with human-adapted pathogens substantially contribute to the differentiation complexity of tissue macrophages, which has been only partially resolved. Specifically, the response to mycobacterial species-which range from <i>Mycobacterium tuberculosis</i> (with highest specificity for humans, broad organ tropism, yet tissue-specific disease phenotypes) to environmental mycobacteria with humans as accidental hosts-may serve as a paradigm of tissue macrophage adaptation mechanisms. While mycobacterial species-specific tissue preferences are partially related to the mode of acquisition and pathogen characteristics, evolutionary convergence with macrophages driven by metabolic features of the target organ likely contributes to infection resistance and immunopathology. In this review, we unravel the mechanisms of tissue-specific macrophage differentiation and its limitations in mycobacterial infections.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"423-450"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of immunologyPub Date : 2025-04-01Epub Date: 2025-03-14DOI: 10.1146/annurev-immunol-101721-032910
Bing Zhang, Pengbiao Xu, Andrea Ablasser
{"title":"Regulation of the cGAS-STING Pathway.","authors":"Bing Zhang, Pengbiao Xu, Andrea Ablasser","doi":"10.1146/annurev-immunol-101721-032910","DOIUrl":"10.1146/annurev-immunol-101721-032910","url":null,"abstract":"<p><p>The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"667-692"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies.","authors":"Sylvain Latour","doi":"10.1146/annurev-immunol-082323-035455","DOIUrl":"https://doi.org/10.1146/annurev-immunol-082323-035455","url":null,"abstract":"<p><p>Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"43 1","pages":"723-749"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143962108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of immunologyPub Date : 2025-04-01Epub Date: 2025-01-15DOI: 10.1146/annurev-immunol-083122-040107
Courtney E W Sulentic, Barbara L F Kaplan, B Paige Lawrence
{"title":"Using the Key Characteristics Framework to Unlock the Mysteries of Aryl Hydrocarbon Receptor-Mediated Effects on the Immune System.","authors":"Courtney E W Sulentic, Barbara L F Kaplan, B Paige Lawrence","doi":"10.1146/annurev-immunol-083122-040107","DOIUrl":"10.1146/annurev-immunol-083122-040107","url":null,"abstract":"<p><p>Initially discovered for its role mediating the deleterious effects of environmental contaminants, the aryl hydrocarbon receptor (AHR) is now known to be a crucial regulator of the immune system. The expanding list of AHR ligands includes synthetic and naturally derived molecules spanning pollutants, phytochemicals, pharmaceuticals, and substances derived from amino acids and microorganisms. The consequences of engaging AHR vary, depending on factors such as the AHR ligand, cell type, immune challenge, developmental state, dose, and timing of exposure relative to the immune stimulus. This review frames this complexity using the recently identified key characteristics of agents that affect immune system function (altered cell signaling, proliferation, differentiation, effector function, communication, trafficking, death, antigen presentation and processing, and tolerance). The use of these key characteristics provides a scaffold for continued discovery of how AHR and its myriad ligands influence the immune system, which will help harness the power of this enigmatic receptor to prevent or treat disease.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"191-218"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hirotsugu Oda, Alessandro Annibaldi, Daniel L Kastner, Ivona Aksentijevich
{"title":"Genetic Regulation of Cell Death: Insights from Autoinflammatory Diseases.","authors":"Hirotsugu Oda, Alessandro Annibaldi, Daniel L Kastner, Ivona Aksentijevich","doi":"10.1146/annurev-immunol-090222-105848","DOIUrl":"https://doi.org/10.1146/annurev-immunol-090222-105848","url":null,"abstract":"<p><p>Metazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death-induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses-inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death-induced inflammation in humans-and provide a possible road map to countering this process across the spectrum of rare and common illnesses.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"43 1","pages":"313-342"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143953115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Cytokines to Tuberculosis and Back: My Journey to Understanding the Immune Response to Infection.","authors":"Anne O'Garra","doi":"10.1146/annurev-immunol-010824-041601","DOIUrl":"10.1146/annurev-immunol-010824-041601","url":null,"abstract":"<p><p>I felt honored by the invitation to write this autobiography, although it was an arduous task to describe my journey through science: first bacterial adhesion, then cytokine function, and then immune responses in tuberculosis. Since only seven women had been authors of autobiographies for the <i>Annual Review of Immunology</i>, I felt I couldn't refuse to contribute to Volume 43 of the journal. Moreover, this was a good occasion to record my appreciation to all the lab members and collaborators for their contributions over the last 40 years, to remember the exciting times, and to reflect on the obstacles we faced. I often reflect on this line that is commonly attributed to Winston Churchill: Success is not final; failure is not fatal: It is the courage to continue that counts. What kept me going was a burning desire to know how things work and find enjoyment in the discovery. This passion to understand immune responses to infection remains with me to this day. I thank all those I have interacted with for the support and friendship they provided.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"43 1","pages":"1-28"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143963055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of immunologyPub Date : 2025-04-01Epub Date: 2025-02-28DOI: 10.1146/annurev-immunol-082523-124415
Esen Sefik, Tianli Xiao, Michael Chiorazzi, Ian Odell, Fengrui Zhang, Kriti Agrawal, Goran Micevic, Richard A Flavell
{"title":"Engineering Mice to Study Human Immunity.","authors":"Esen Sefik, Tianli Xiao, Michael Chiorazzi, Ian Odell, Fengrui Zhang, Kriti Agrawal, Goran Micevic, Richard A Flavell","doi":"10.1146/annurev-immunol-082523-124415","DOIUrl":"10.1146/annurev-immunol-082523-124415","url":null,"abstract":"<p><p>Humanized mice, which carry a human hematopoietic and immune system, have greatly advanced our understanding of human immune responses and immunological diseases. These mice are created via the transplantation of human hematopoietic stem and progenitor cells into immunocompromised murine hosts further engineered to support human hematopoiesis and immune cell growth. This article explores genetic modifications in mice that enhance xeno-tolerance, promote human hematopoiesis and immunity, and enable xenotransplantation of human tissues with resident immune cells. We also discuss genetic editing of the human immune system, provide examples of how humanized mice with humanized organs model diseases for mechanistic studies, and highlight the roles of these models in advancing knowledge of organ biology, immune responses to pathogens, and preclinical drugs tested for cancer treatment. The integration of multi-omics and state-of-the art approaches with humanized mouse models is crucial for bridging existing human data with causality and promises to significantly advance mechanistic studies.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"451-487"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein Synthesis and Metabolism in T Cells.","authors":"Linda V Sinclair, Doreen A Cantrell","doi":"10.1146/annurev-immunol-082323-035253","DOIUrl":"https://doi.org/10.1146/annurev-immunol-082323-035253","url":null,"abstract":"<p><p>T lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor- and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"43 1","pages":"343-366"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer.","authors":"Lisa Rausch, Axel Kallies","doi":"10.1146/annurev-immunol-082223-044122","DOIUrl":"https://doi.org/10.1146/annurev-immunol-082223-044122","url":null,"abstract":"<p><p>CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"43 1","pages":"515-543"},"PeriodicalIF":26.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143957306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}