Annual review of immunology最新文献

筛选
英文 中文
Using the Key Characteristics Framework to Unlock the Mysteries of Aryl Hydrocarbon Receptor-Mediated Effects on the Immune System.
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2025-01-15 DOI: 10.1146/annurev-immunol-083122-040107
Courtney E W Sulentic, Barbara L F Kaplan, B Paige Lawrence
{"title":"Using the Key Characteristics Framework to Unlock the Mysteries of Aryl Hydrocarbon Receptor-Mediated Effects on the Immune System.","authors":"Courtney E W Sulentic, Barbara L F Kaplan, B Paige Lawrence","doi":"10.1146/annurev-immunol-083122-040107","DOIUrl":"https://doi.org/10.1146/annurev-immunol-083122-040107","url":null,"abstract":"<p><p>Initially discovered for its role mediating the deleterious effects of environmental contaminants, the aryl hydrocarbon receptor (AHR) is now known to be a crucial regulator of the immune system. The expanding list of AHR ligands includes synthetic and naturally derived molecules spanning pollutants, phytochemicals, pharmaceuticals, and substances derived from amino acids and microorganisms. The consequences of engaging AHR vary, depending on factors such as the AHR ligand, cell type, immune challenge, developmental state, dose, and timing of exposure relative to the immune stimulus. This review frames this complexity using the recently identified key characteristics of agents that affect immune system function (altered cell signaling, proliferation, differentiation, effector function, communication, trafficking, death, antigen presentation and processing, and tolerance). The use of these key characteristics provides a scaffold for continued discovery of how AHR and its myriad ligands influence the immune system, which will help harness the power of this enigmatic receptor to prevent or treat disease.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":""},"PeriodicalIF":26.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease.
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2025-01-03 DOI: 10.1146/annurev-immunol-101721-065224
Jenny K Gustafsson, Gunnar C Hansson
{"title":"Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease.","authors":"Jenny K Gustafsson, Gunnar C Hansson","doi":"10.1146/annurev-immunol-101721-065224","DOIUrl":"https://doi.org/10.1146/annurev-immunol-101721-065224","url":null,"abstract":"<p><p>The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cells secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine and airways. The respiratory tract mucus system clears particles and microorganisms from healthy lungs but causes disease if reorganized to an attached mucus that cannot be efficiently transported. Similarly, transformation of large intestine mucus from impenetrable to penetrable causes chronic inflammation directed toward the intestinal microbiota. Mucus-producing goblet cells are regulated by and responsive to signals from immune cells and at the same time signal back to the immune system. In this review we focus on the relationship of immune cells with intestinal goblet cells and mucus, making parallels to the respiratory tract.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":""},"PeriodicalIF":26.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited.
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2025-01-02 DOI: 10.1146/annurev-immunol-082423-040557
Tania H Watts, Karen K M Yeung, Tianning Yu, Seungwoo Lee, Razieh Eshraghisamani
{"title":"TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited.","authors":"Tania H Watts, Karen K M Yeung, Tianning Yu, Seungwoo Lee, Razieh Eshraghisamani","doi":"10.1146/annurev-immunol-082423-040557","DOIUrl":"https://doi.org/10.1146/annurev-immunol-082423-040557","url":null,"abstract":"<p><p>Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous <i>Annual Review of Immunology</i> article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":""},"PeriodicalIF":26.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracing the Evolution of Human Immunity Through Ancient DNA.
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2024-12-20 DOI: 10.1146/annurev-immunol-082323-024638
Etienne Patin, Lluis Quintana-Murci
{"title":"Tracing the Evolution of Human Immunity Through Ancient DNA.","authors":"Etienne Patin, Lluis Quintana-Murci","doi":"10.1146/annurev-immunol-082323-024638","DOIUrl":"https://doi.org/10.1146/annurev-immunol-082323-024638","url":null,"abstract":"<p><p>Infections have imposed strong selection pressures throughout human evolution, making the study of natural selection's effects on immunity genes highly complementary to disease-focused research. This review discusses how ancient DNA studies, which have revolutionized evolutionary genetics, increase our understanding of the evolution of human immunity. These studies have shown that interbreeding between modern humans and Neanderthals or Denisovans has influenced present-day immune responses, particularly to viruses. Additionally, ancient genomics enables the tracking of how human immunity has evolved across cultural transitions, highlighting strong selection since the Bronze Age in Europe (<4,500 years) and potential genetic adaptations to epidemics raging during the Middle Ages and the European colonization of the Americas. Furthermore, ancient genomic studies suggest that the genetic risk for noninfectious immune disorders has gradually increased over millennia because alleles associated with increased risk for autoimmunity and inflammation once conferred resistance to infections. The challenge now is to extend these findings to diverse, non-European populations and to provide a more global understanding of the evolution of human immunity.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":""},"PeriodicalIF":26.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T Cell Development and Responses in Human Immune System Mice.
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2024-12-20 DOI: 10.1146/annurev-immunol-082223-041615
Mohsen Khosravi-Maharlooei, Hao Wei Li, Megan Sykes
{"title":"T Cell Development and Responses in Human Immune System Mice.","authors":"Mohsen Khosravi-Maharlooei, Hao Wei Li, Megan Sykes","doi":"10.1146/annurev-immunol-082223-041615","DOIUrl":"https://doi.org/10.1146/annurev-immunol-082223-041615","url":null,"abstract":"<p><p>Human Immune System (HIS) mice constructed with mature human immune cells or with human hematopoietic stem cells and thymic tissue have provided an important tool for human immunological research. In this article, we first review the different types of HIS mice based on human tissues transplanted and sources of the tissues. We then focus on knowledge of human T cell development and responses obtained using HIS mouse models. These areas include the development of human T cell subsets, with a focus on $upalpha$$upbeta$ conventional T cells and regulatory T cells, and human T cell responses in the settings of infection, transplantation rejection and tolerance, autoimmune disease, cancer immunotherapy, and regulatory T cell therapy. We also discuss the limitations and potential future applications of HIS mouse models.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":""},"PeriodicalIF":26.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2: The Interplay Between Evolution and Host Immunity.
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2024-12-20 DOI: 10.1146/annurev-immunol-083122-043054
James Brett Case, Shilpi Jain, Mehul S Suthar, Michael S Diamond
{"title":"SARS-CoV-2: The Interplay Between Evolution and Host Immunity.","authors":"James Brett Case, Shilpi Jain, Mehul S Suthar, Michael S Diamond","doi":"10.1146/annurev-immunol-083122-043054","DOIUrl":"https://doi.org/10.1146/annurev-immunol-083122-043054","url":null,"abstract":"<p><p>The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":""},"PeriodicalIF":26.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peeking Into the Black Box of T Cell Receptor Signaling. 窥探T细胞受体信号传导的黑匣子。
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-immunol-090222-112028
Arthur Weiss
{"title":"Peeking Into the Black Box of T Cell Receptor Signaling.","authors":"Arthur Weiss","doi":"10.1146/annurev-immunol-090222-112028","DOIUrl":"10.1146/annurev-immunol-090222-112028","url":null,"abstract":"<p><p>I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"1-20"},"PeriodicalIF":26.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41101418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroimmunology of the Lung. 肺中的神经免疫相互作用。
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-immunol-083122-042512
Rossana Azzoni, Olaf Perdijk, Nicola L Harris, Benjamin J Marsland
{"title":"Neuroimmunology of the Lung.","authors":"Rossana Azzoni, Olaf Perdijk, Nicola L Harris, Benjamin J Marsland","doi":"10.1146/annurev-immunol-083122-042512","DOIUrl":"10.1146/annurev-immunol-083122-042512","url":null,"abstract":"<p><p>Barrier tissues are highly innervated by sensory and autonomic nerves that are positioned in close proximity to both stromal and immune cell populations. Together with a growing awareness of the far-reaching consequences of neuroimmune interactions, recent studies have uncovered key mechanisms through which they contribute to organ homeostasis and immunity. It has also become clear that dysregulation of such interactions is implicated in the development of chronic lung diseases. This review describes the characteristics of the lung nervous system and discusses the molecular mechanisms that underlie lung neuroimmune interactions in infection and disease. We have contextualized the current literature and identified opportune areas for further investigation. Indeed, both the lung-brain axis and local neuroimmune interactions hold enormous potential for the exploration and development of novel therapeutic strategies targeting lung diseases.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"57-81"},"PeriodicalIF":26.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138290118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian Rhythms in Anticancer Immunity: Mechanisms and Treatment Opportunities. 抗癌免疫中的昼夜节律:机制与治疗机会。
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2024-06-01 DOI: 10.1146/annurev-immunol-090122-050842
Robert Pick, Chen Wang, Qun Zeng, Zeynep Melis Gül, Christoph Scheiermann
{"title":"Circadian Rhythms in Anticancer Immunity: Mechanisms and Treatment Opportunities.","authors":"Robert Pick, Chen Wang, Qun Zeng, Zeynep Melis Gül, Christoph Scheiermann","doi":"10.1146/annurev-immunol-090122-050842","DOIUrl":"https://doi.org/10.1146/annurev-immunol-090122-050842","url":null,"abstract":"<p><p>Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens-chrono-immunotherapies-that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"42 1","pages":"83-102"},"PeriodicalIF":26.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunology of Kidney Disease. 肾脏疾病免疫学。
IF 26.9 1区 医学
Annual review of immunology Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-immunol-090122-045843
Orestes Foresto-Neto, Luísa Menezes-Silva, Jefferson Antônio Leite, Magaiver Andrade-Silva, Niels Olsen Saraiva Câmara
{"title":"Immunology of Kidney Disease.","authors":"Orestes Foresto-Neto, Luísa Menezes-Silva, Jefferson Antônio Leite, Magaiver Andrade-Silva, Niels Olsen Saraiva Câmara","doi":"10.1146/annurev-immunol-090122-045843","DOIUrl":"10.1146/annurev-immunol-090122-045843","url":null,"abstract":"<p><p>The immune system and the kidneys are closely related. Immune components mediate acute kidney disease and are crucial to the progression of chronic kidney disease. Beyond its pathogenic functions, the immune system supports immunological homeostasis in healthy kidneys. The kidneys help maintain immune equilibrium by removing metabolic waste products and toxins, thereby limiting local and systemic inflammation. In this review, we describe the close relationship between the immune system and the kidneys. We discuss how the imbalance in the immune response can be deleterious to the kidneys and how immunomodulation can be important in preventing end-stage renal disease. In addition, recent tools such as in silico platforms and kidney organoids can help unveil the relationship between immune cells and kidney homeostasis.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":"207-233"},"PeriodicalIF":26.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信