Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi
{"title":"Combining Multiple Spectroscopic Techniques to Reveal the Effects of <i>Staphylococcus aureus</i> Infection on Human Bone Tissues.","authors":"Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi","doi":"10.1177/00037028241278903","DOIUrl":"https://doi.org/10.1177/00037028241278903","url":null,"abstract":"<p><p>Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. <i>Staphylococcus aureus</i> (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin-Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens' presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kailun Zhang, Ruike Bi, Johan Tidholm, Jakob Ängeby, Mattias Richter, Andreas Ehn
{"title":"Detection of Nickel Atoms Released from Electrodes in Spark Discharges Using Laser-Induced Fluorescence.","authors":"Kailun Zhang, Ruike Bi, Johan Tidholm, Jakob Ängeby, Mattias Richter, Andreas Ehn","doi":"10.1177/00037028241285150","DOIUrl":"https://doi.org/10.1177/00037028241285150","url":null,"abstract":"<p><p>The reduction of greenhouse gas emissions and the effort of carbon neutrality require the improvement of spark-ignition engines in terms of efficiency and capability to operate on renewable fuels. The electrode wear of spark plugs, used for ignition of novel fuels and lean mixtures, emerges as a significant challenge in this transition. Understanding the physical mechanism and influence of spark operation parameters of the wear process is thus important. Compared to the conventional methodology of performing long-term wear tests, laser-based optical diagnostics methods are capable of assessing electrode wear during one single or a few spark discharges. In this work, the necessary initial steps required for performing optical investigations using laser-induced fluorescence (LIF) are presented. Several excitation pathways of nickel atoms were investigated, and 336.96 nm was identified as the optimal one. This excitation approach yielded emissions between 338.75 and 353.58 nm, effectively avoiding the major interference from N<sub>2</sub> plasma emission in spark discharges. Additionally, a linear relationship in fluorescence signal intensity with excitation energy up to 400 µJ was observed. These findings indicate the potential of LIF for in situ diagnostics of electrode wear, contributing to engine development in both efficiency and compatibility with sustainable fuels.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redefining Spectral Data Analysis with Immersive Analytics: Exploring Domain-Shifted Model Spaces for Optimal Model Selection.","authors":"Jordan M J Peper, John H Kalivas","doi":"10.1177/00037028241280669","DOIUrl":"https://doi.org/10.1177/00037028241280669","url":null,"abstract":"<p><p>Modern developments in autonomous chemometric machine learning technology strive to relinquish the need for human intervention. However, such algorithms developed and used in chemometric multivariate calibration and classification applications exclude crucial expert insight when difficult and safety-critical analysis situations arise, e.g., spectral-based medical decisions such as noninvasively determining if a biopsy is cancerous. The prediction accuracy and interpolation capabilities of autonomous methods for new samples depend on the quality and scope of their training (calibration) data. Specifically, analysis patterns within target data not captured by the training data will produce undesirable outcomes. Alternatively, using an immersive analytic approach allows insertion of human expert judgment at key machine learning algorithm junctures forming a sensemaking process performed in cooperation with a computer. The capacity of immersive virtual reality (IVR) environments to render human comprehensible three-dimensional space simulating real-world encounters, suggests its suitability as a hybrid immersive human-computer interface for data analysis tasks. Using IVR maximizes human senses to capitalize on our instinctual perception of the physical environment, thereby leveraging our innate ability to recognize patterns and visualize thresholds crucial to reducing erroneous outcomes. In this first use of IVR as an immersive analytic tool for spectral data, we examine an integrated IVR real-time model selection algorithm for a recent model updating method that adapts a model from the original calibration domain to predict samples from shifted target domains. Using near-infrared data, analyte prediction errors from IVR-selected models are reduced compared to errors using an established autonomous model selection approach. Results demonstrate the viability of IVR as a human data analysis interface for spectral data analysis including classification problems.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Hradil, Zdeňka Čermáková, Janka Hradilová, Petr Bezdička, Jitka Míková
{"title":"Trace and Minor Element Analysis of Azurite Blues in Fine Arts: Possibilities and Limitations in Provenance Studies.","authors":"David Hradil, Zdeňka Čermáková, Janka Hradilová, Petr Bezdička, Jitka Míková","doi":"10.1177/00037028241280989","DOIUrl":"https://doi.org/10.1177/00037028241280989","url":null,"abstract":"<p><p>Azurite, a historical blue mineral pigment, has previously been described to contain certain elemental impurities. These may originate from host rocks, vein fillings, or the primary copper ore mineralization. In this study, azurites (and also green malachites) from three important Central European deposits with a potential of being exploited for pigment usage already in the Middle Ages have been studied, together with azurite from Chessy, France, with a different geological setting. Using electron probe microanalysis and, more importantly, laser ablation inductively coupled plasma mass spectroscopy for trace elemental analysis, several indicators were pinpointed as important for provenance: characteristic elemental fingerprint of the deposit, e.g., elevated lead (Pb) in combination with rare earth elements, may be combined with zinc (Zn)/arsenic (As) ratio (indicating sources of excess Zn in the primary deposit) and the overall amount of metal impurities (suggesting the source mineral of copper for azurite formation). In addition, malachites from the same deposits were found to preferentially incorporate primary ore metal elements as well as Cd, Mg, Mn, or U. Therefore, if azurite pigment contains an elevated amount of malachite as an impurity, it may significantly influence the overall elemental composition. The results obtained on geological samples were applied to two micro-samples of works of art containing azurite-rich layers originating from the 13th-14th and 16th centuries. It was shown that it is highly beneficial to focus on the overall trace elemental composition of the paint layer and not on the admixed mineral grains, as their presence, especially in minute micro-samples, is largely accidental and thus not representative. Although a higher number of samples need to be studied in the future, the newly described criteria made it possible to exclude some of the localities of the employed azurite pigment. This confirmed the key importance of trace elements analysis of mineral pigments for the provenance studies of fine arts.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solid State Vanadate Laser and 213 nm Rayleigh Rejection Filter Enable Miniaturized Deep Ultraviolet Raman Spectrometers.","authors":"Sergei V Bykov, Sanford A Asher","doi":"10.1177/00037028241280722","DOIUrl":"https://doi.org/10.1177/00037028241280722","url":null,"abstract":"<p><p>A combination of a highly efficient 213 nm Rayleigh rejection filter (RRF) and a miniaturized 213 nm neodymium-doped vanadate laser enables portable deep ultraviolet (UV) Raman spectrometers. We demonstrate the high efficiency of 213 nm RRF manufactured by Green Optics Co., Ltd by utilizing our compact 213 nm vanadate laser to measure high signal-to-noise ratio UV Raman spectra of Teflon and UV resonance Raman (UVRR) spectra of solid ammonium nitrate. We also demonstrate UVRR detection of trace amounts of ammonia formed during ammonium nitrate UV photolysis. We roughly estimate the ammonia UVRR detection limit of ∼10 ng under our experimental conditions.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi
{"title":"Assessing Mechanochemical Properties of Acrylonitrile Butadiene Styrene (ABS) Items in Cultural Heritage Through a Multimodal Spectroscopic Approach.","authors":"Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi","doi":"10.1177/00037028241267325","DOIUrl":"https://doi.org/10.1177/00037028241267325","url":null,"abstract":"<p><p>A multimodal spectroscopic approach is proposed to correlate the mechanical and chemical properties of plastic materials in art and design objects, at both surface and subsurface levels, to obtain information about their conservation state and to monitor their degradation. The approach was used to investigate the photo-oxidation of acrylonitrile butadiene styrene (ABS), a plastic commonly found in many artistic and design applications, using ABS-based LEGO bricks as model samples. The modifications of the chemical and viscoelastic properties of ABS during photoaging were monitored by correlative Brillouin and Raman microspectroscopy (BRaMS), combined with portable and noninvasive broad-range external reflection infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) relaxometry, directly applicable in museums. BRaMS enabled combined measurements of Brillouin light scattering and Raman spectroscopy in a microspectroscopic setup, providing for the coincident probe of the chemical and mechanical changes of ABS at the sample surface. NMR relaxometry allowed for noninvasive measurements of relaxation times and depth profiles which are directly related to the molecular mobility of the material. Complementary chemical information was acquired by external reflection IR spectroscopy. The simultaneous probe of the chemical and mechanical properties by this multimodal spectroscopic approach enabled us to define a decay model of ABS in terms of compositional changes and variation of stiffness and rigidity occurring with photodegradation. The knowledge acquired on LEGO samples has been used to rate the conservation state of ABS design objects noninvasively investigated by external reflection Fourier transform IR spectroscopy and NMR relaxometry offered by the MObile LABoratory (MOLAB) platform of the European Research Infrastructure of Heritage Science.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreia E Gomes, Sérgio M C Nascimento, João M M Linhares
{"title":"Hyperspectral Imaging Database of Human Facial Skin.","authors":"Andreia E Gomes, Sérgio M C Nascimento, João M M Linhares","doi":"10.1177/00037028241279323","DOIUrl":"https://doi.org/10.1177/00037028241279323","url":null,"abstract":"<p><p>The perceived color of human skin is the result of the interaction of environmental lighting with the skin. Only by resorting to human skin spectral reflectance, it is possible to obtain physical outcomes of this interaction. The purpose of this work was to provide a cured and validated database of hyperspectral images of human faces, useful for several applications, such as psychophysics-based research, object recognition, and material modeling. The hyperspectral imaging data from 29 human faces with different skin tones and sexes, under constant lighting and controlled movements, were described and characterized. Each hyperspectral image, which comprised spectral reflectance of the whole face from 400 to 720 nm in 10 nm steps at each pixel, was analyzed between and within nine facial positions located at different areas of the face. Simultaneously, spectral measurements at the same nine facial positions using conventional local point and/or contact devices were used to ascertain the data. It was found that the spectral reflectance profile changed between skin tones, subjects, and facial locations. Important local variations of the spectral reflectance profile showed that extra care is needed when considering average values from conventional devices at the same area of measurement.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feature Selection and Spectral Indices for Identifying Maize Stress Types.","authors":"Yanru Li, Keming Yang, Bing Wu","doi":"10.1177/00037028241279328","DOIUrl":"https://doi.org/10.1177/00037028241279328","url":null,"abstract":"<p><p>This study aims to identify different types of stress on maize leaves using feature selection and spectral index methods. Spectral data were collected from leaves under heavy metal, water, fertilizer stress, as well as under normal healthy conditions. Preprocessing steps such as continuum removal (CR), standard normal variable (SNV) transformation, multiple scattering correction (MSC), detrend correction (DT), and first-order derivative (FOD) were applied to the raw spectra. Various feature selection methods including ReliefF, chi-square test, recursive feature elimination (FRE), mutual information (MI), random forest (RF), and gradient boosting tree (GBT) were employed to determine the importance scores of different spectral bands, thus identifying sensitive spectral features capable of distinguishing various stress types. Spectral indices for stress type differentiation were constructed using label correlation method. Classification models were built using support vector machine (SVM), K-nearest neighbors (KNN), Gaussian naive Bayes (GNB), extreme gradient boosting (XGBoost), RF, and adaptive boosting (AdaBoost) algorithms. Results indicate that the characteristic spectral bands for differentiating stress types are primarily distributed around the red edge (near 700-800 nm) and water absorption valley (near 1900 nm). Spectral indices constructed using combinations of spectral bands around the near-infrared plateau absorption valley (near 1185 nm) and water absorption valley (near 1460 nm) effectively differentiate maize stress types. Among the modeling classification algorithms, RF and AdaBoost algorithms exhibited optimal performance, demonstrating high classification accuracy on both training and validation sets. These findings hold promise for providing new technical support for maize stress monitoring and diagnosis in agricultural production.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sri Sudewi, Penki Venkata Sai Sashank, Akhtar Rasool, Najeeb Ullah, Muhammad Zulfajri, Hsuan-Ying Chen, Genin Gary Huang
{"title":"Fluorescence and Colorimetric Dual-Readout Detection of Tetracycline Using Leucine-Conjugated Iron Oxide Quantum Dots.","authors":"Sri Sudewi, Penki Venkata Sai Sashank, Akhtar Rasool, Najeeb Ullah, Muhammad Zulfajri, Hsuan-Ying Chen, Genin Gary Huang","doi":"10.1177/00037028241279464","DOIUrl":"https://doi.org/10.1177/00037028241279464","url":null,"abstract":"<p><p>This study developed a dual-readout system utilizing fluorescence and colorimetry based on iron oxide quantum dots (IO-QDs) for detecting tetracycline (TCy). IO-QDs were synthesized within 6 h using L-leucine as a surface modifier, achieving a more efficient route. Upon interaction with TCy, IO-QDs exhibited a significant decrease in fluorescence response and observable color changes, while fluorescence lifetime remained consistent regardless of TCy presence. Moreover, IO-QDs' fluorescence response remained stable across various temperatures. The Förster resonance energy transfer distance of less than 2 nm and a quenching constant of 2.90 × 10<sup>12</sup> M<sup>-1</sup>s<sup>-1</sup> indicated static quenching in the presence of TCy. Additionally, significant changes in observed and corrected fluorescence efficiency suggested the involvement of the inner filter effect in the fluorescence quenching of IO-QDs. The synthesized IO-QDs were then utilized for selective and rapid fluorescence-based TCy detection, showing a linear range of 0.5 to 80 μM. Simultaneously, a colorimetric method for TCy detection was established, demonstrating a good linear relationship within the range of 0.5 to 20 μM. The detection limits for TCy were determined as 0.539 and 0.329 μM using fluorescence and colorimetric approaches, respectively. Furthermore, IO-QDs were applied to detect real samples, and the dual-readout probe exhibited satisfactory recoveries, confirming the practical reliability of the developed method for analyzing milk and drinking water samples.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monitoring the Dissolution Behavior of Novel Pharmaceutical Cocrystals Consisting of Antimalarial Drug Artemisinin with Probe-Type Low-Frequency Raman Spectrometer.","authors":"Takayuki Kudo, Soichiro Miura, Kazuhiko Takatori, Varin Titapiwatanakun, Vasanthi Palanisamy, Katsuhiko Yamamoto, Yukihiro Ikeda, Toshiro Fukami","doi":"10.1177/00037028241275670","DOIUrl":"https://doi.org/10.1177/00037028241275670","url":null,"abstract":"<p><p>Artemisinin (ART) is a most promising antimalarial agent. However, its low aqueous solubility limits its oral absorption, resulting in low bioavailability. In this study, we have successfully discovered a novel cocrystal with 2-methyl resorcinol (ART-2MRE) providing improved solubility compared with a previously reported cocrystal with resorcinol (ART-RES). Single crystal X-ray structure analysis revealed that the ART-2MRE cocrystal was composed of ART and 2MRE in a molar ratio of 2 : 1. Though the ART-2MRE and ART-RES cocrystals were found to have similarities in their crystal structures, with one layer of a cocrystal former and two layers of ART arranged in alternating rows, the ART-2MRE cocrystal showed higher dissolution rate than ART-RES cocrystal. In situ real-time low-frequency (LF) Raman monitoring and powder X-ray diffraction (PXRD) measurements of the crystals during the dissolution test proved useful to investigate the dissolution behavior of the cocrystals. Low-frequency Raman monitoring revealed that as dissolution progressed, there was a continuous shift from the peak unique to the ART-2MRE cocrystal to the peak unique to the ART stable form. Similar observations were obtained in PXRD measurements as well. Furthermore, experiments were conducted by adding a polymer to the dissolution test solution to investigate the dissolution behavior under supersaturation, indicating the possibility of differences in the dissolution behavior between the ART-2MRE cocrystal and ART-RES cocrystal. Understanding the dissolution behavior from cocrystals is essential in developing cocrystals.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}