连续结晶过程中多晶监测的在线拉曼光谱。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Sreya Sarkar, Andreas Stumpf, Zhenqi Shi, Dawen Kou
{"title":"连续结晶过程中多晶监测的在线拉曼光谱。","authors":"Sreya Sarkar, Andreas Stumpf, Zhenqi Shi, Dawen Kou","doi":"10.1177/00037028251344294","DOIUrl":null,"url":null,"abstract":"<p><p>In-line monitoring of continuous crystallization processes can provide real-time information about the polymorph composition, potentially providing a superior understanding and control of the crystallization kinetics throughout the process. Here, we present a case study using in-line Raman spectroscopy as a process analytical technology (PAT) tool to enable fast, in-situ, non-destructive, and quantitative measurement of complex polymorphic transitions during flow-induced continuous crystallization of a model compound, which has two main polymorphs only showing subtle differences in the fingerprint regions of their Raman spectra. Second derivative Raman spectra were used for qualitative monitoring of polymorph changes, and a Gaussian curve fitting method was developed and utilized for quantitative determinations of polymorph compositions in continuous crystallizations under an array of process conditions. This study illustrates the complex and dynamic nature of polymorph transitions during continuous crystallization under various process conditions as well as the ability of in-line Raman spectroscopy to monitor the process qualitatively and quantitatively in order to have greater understanding of the process design space and to avoid conditions that lead to undesired polymorphs in the crystallization process.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251344294"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Line Raman Spectroscopy for Polymorph Monitoring During Continuous Crystallization.\",\"authors\":\"Sreya Sarkar, Andreas Stumpf, Zhenqi Shi, Dawen Kou\",\"doi\":\"10.1177/00037028251344294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In-line monitoring of continuous crystallization processes can provide real-time information about the polymorph composition, potentially providing a superior understanding and control of the crystallization kinetics throughout the process. Here, we present a case study using in-line Raman spectroscopy as a process analytical technology (PAT) tool to enable fast, in-situ, non-destructive, and quantitative measurement of complex polymorphic transitions during flow-induced continuous crystallization of a model compound, which has two main polymorphs only showing subtle differences in the fingerprint regions of their Raman spectra. Second derivative Raman spectra were used for qualitative monitoring of polymorph changes, and a Gaussian curve fitting method was developed and utilized for quantitative determinations of polymorph compositions in continuous crystallizations under an array of process conditions. This study illustrates the complex and dynamic nature of polymorph transitions during continuous crystallization under various process conditions as well as the ability of in-line Raman spectroscopy to monitor the process qualitatively and quantitatively in order to have greater understanding of the process design space and to avoid conditions that lead to undesired polymorphs in the crystallization process.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028251344294\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251344294\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251344294","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

连续结晶过程的在线监测可以提供有关晶型组成的实时信息,从而有可能在整个过程中提供对结晶动力学的更好理解和控制。在这里,我们提出了一个案例研究,使用在线拉曼光谱作为过程分析技术(PAT)工具,能够快速、原位、无损和定量地测量模型化合物在流动诱导的连续结晶过程中的复杂多晶转变,该模型化合物具有两种主要多晶,仅在其拉曼光谱的指纹区域显示出细微的差异。利用二阶导数拉曼光谱对晶型变化进行定性监测,建立了一种高斯曲线拟合方法,并将其用于一系列工艺条件下连续结晶中晶型组成的定量测定。本研究说明了在不同工艺条件下连续结晶过程中多晶转变的复杂性和动态性质,以及在线拉曼光谱对该过程进行定性和定量监测的能力,以便更好地了解工艺设计空间,并避免在结晶过程中导致不希望的多晶的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-Line Raman Spectroscopy for Polymorph Monitoring During Continuous Crystallization.

In-line monitoring of continuous crystallization processes can provide real-time information about the polymorph composition, potentially providing a superior understanding and control of the crystallization kinetics throughout the process. Here, we present a case study using in-line Raman spectroscopy as a process analytical technology (PAT) tool to enable fast, in-situ, non-destructive, and quantitative measurement of complex polymorphic transitions during flow-induced continuous crystallization of a model compound, which has two main polymorphs only showing subtle differences in the fingerprint regions of their Raman spectra. Second derivative Raman spectra were used for qualitative monitoring of polymorph changes, and a Gaussian curve fitting method was developed and utilized for quantitative determinations of polymorph compositions in continuous crystallizations under an array of process conditions. This study illustrates the complex and dynamic nature of polymorph transitions during continuous crystallization under various process conditions as well as the ability of in-line Raman spectroscopy to monitor the process qualitatively and quantitatively in order to have greater understanding of the process design space and to avoid conditions that lead to undesired polymorphs in the crystallization process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信