Renfu Zhang, Menghan Yin, Peipei Shao, Qingjiao Huang, Gunnar A. Niklasson, Rui-Tao Wen
{"title":"Polaron hopping induced dual-band absorption in all amorphous cathodic electrochromic oxides","authors":"Renfu Zhang, Menghan Yin, Peipei Shao, Qingjiao Huang, Gunnar A. Niklasson, Rui-Tao Wen","doi":"10.1063/5.0244549","DOIUrl":"https://doi.org/10.1063/5.0244549","url":null,"abstract":"Electrochromic oxides have tremendous potential applications in smart windows, displays, and camouflage due to their capability for selective modulation of visible and near-infrared optical spectra. Although these applications are dependent on the optical performance, the origin of the optical absorption in electrochromic oxides is not clear. Here, we demonstrate that the electrochromism of all amorphous cathodic electrochromic oxides can be described by a combination of polaron and bipolaron hopping. Based on the valences of the metallic constituents, we model experimental optical absorption spectra by polaron theory and assign two prominent absorption peaks to polaronic and bipolaronic charge transfer excitations. However, in the special case of V2O5, three peaks were necessary to fit the optical spectra. The activation energies of polaronic and bipolaronic hopping were remarkably similar for all the cathodic oxides studied. Within the framework of polaron absorption, V2O5 would be categorized as a cathodic oxide, rather than as a mixed anodic/cathodic material as in the conventional picture. We emphasize that our findings here not only offer a profound understanding of all amorphous cathodic electrochromic oxides but also pave the way for exploring electrochromic oxides with dual-band modulations.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"32 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-stable multifunctional dynamically reconfigurable artificial synapses based on hybrid graphene/ferroelectric field-effect transistors","authors":"Liang Liu, Xutao Zhang, Ruijuan Tian, Qiao Zhang, Mingwen Zhang, Yu Zhang, Xuetao Gan","doi":"10.1063/5.0235614","DOIUrl":"https://doi.org/10.1063/5.0235614","url":null,"abstract":"In response to the challenges posed by traditional computing architectures in handling big data and AI demands, neuromorphic computing has emerged as a promising alternative inspired by the brain's efficiency. This study focuses on three-terminal synaptic transistors utilizing graphene and P(VDF-TrFE) to achieve dynamic reconfigurability between excitatory and inhibitory response modes, which are crucial for mimicking biological functions. The devices operate by applying different top gate spikes (±25 V and ±10 V) to modulate the polarization degree of P(VDF-TrFE), thereby regulating the carrier type and concentration in the graphene channel. This results in the effective realization of enhancement and inhibition processes in two neural-like states: excitatory and inhibitory modes, accompanied by good neural plasticity with paired-pulse facilitation and spike-time-dependent plasticity. With these features, the synaptic devices achieve brain-like memory enhancement and human-like perception functions, exhibiting excellent stability, durability over 1000 cycles, and a long retention period exceeding 10 years. Additionally, the performance of the artificial neural network is evaluated for handwritten digit recognition, achieving a high recognition accuracy of 92.28%. Our study showcases the development of highly stable, dynamically reconfigurable artificial synaptic transistors capable of emulating complex neural functions, providing a foundation for emerging neuromorphic computing systems and AI technologies.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"50 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Mazharul Islam, Shamiul Alam, Md Rahatul Islam Udoy, Md Shafayat Hossain, Kathleen E Hamilton, Ahmedullah Aziz
{"title":"Harnessing ferro-valleytricity in pentalayer rhombohedral graphene for memory and compute","authors":"Md Mazharul Islam, Shamiul Alam, Md Rahatul Islam Udoy, Md Shafayat Hossain, Kathleen E Hamilton, Ahmedullah Aziz","doi":"10.1063/5.0231749","DOIUrl":"https://doi.org/10.1063/5.0231749","url":null,"abstract":"Two-dimensional materials with multiple degrees of freedom, including spin, valleys, and orbitals, open up an exciting avenue for engineering multifunctional devices. Beyond spintronics, these degrees of freedom can lead to novel quantum effects such as valley-dependent Hall effects and orbital magnetism, which could revolutionize next-generation electronics. However, achieving independent control over valley polarization and orbital magnetism has been a challenge due to the need for large electric fields. A recent breakthrough involving pentalayer rhombohedral graphene has demonstrated the ability to individually manipulate anomalous Hall signals and orbital magnetic hysteresis, forming what is known as a valley-magnetic quartet. Here, we leverage the electrically tunable ferro-valleytricity of pentalayer rhombohedral graphene to develop nonvolatile memory and in-memory computation applications. We propose an architecture for a dense, scalable, and selector-less nonvolatile memory array that harnesses the electrically tunable ferro-valleytricity. In our designed array architecture, nondestructive read and write operations are conducted by sensing the valley state through two different pairs of terminals, allowing for independent optimization of read/write peripheral circuits. The power consumption of our PRG-based array is remarkably low, with only ∼6 nW required per write operation and ∼2.3 nW per read operation per cell. This consumption is orders of magnitude lower than that of the majority of state-of-the-art cryogenic memories. Additionally, we engineer in-memory computation by implementing majority logic operations within our proposed nonvolatile memory array without modifying the peripheral circuitry. Our framework presents a promising pathway toward achieving ultra-dense cryogenic memory and in-memory computation capabilities.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"48 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiongfang Liu, Tong Yang, Shanquan Chen, Jing Wu, Chi Sin Tang, Yuanjie Ning, Zuhuang Chen, Liang Dai, Mengxia Sun, Mingyao Chen, Kun Han, Difan Zhou, Shengwei Zeng, Shuo Sun, Sensen Li, Ming Yang, Mark B. H. Breese, Chuanbing Cai, Thirumalai Venkatesan, Andrew T. S. Wee, Xinmao Yin
{"title":"Small polarons mediated near-room-temperature metal–insulator transition in vanadium dioxide and their hopping dynamics","authors":"Xiongfang Liu, Tong Yang, Shanquan Chen, Jing Wu, Chi Sin Tang, Yuanjie Ning, Zuhuang Chen, Liang Dai, Mengxia Sun, Mingyao Chen, Kun Han, Difan Zhou, Shengwei Zeng, Shuo Sun, Sensen Li, Ming Yang, Mark B. H. Breese, Chuanbing Cai, Thirumalai Venkatesan, Andrew T. S. Wee, Xinmao Yin","doi":"10.1063/5.0236807","DOIUrl":"https://doi.org/10.1063/5.0236807","url":null,"abstract":"Researchers pursuing advanced photoelectric devices have discovered near room-temperature metal–insulator transitions (MIT) in nonvolatile VO2. Despite theoretical investigations suggesting that polaron dynamics mediate the MIT, direct experimental evidence remains scarce. In this study, we present direct evidence of the polaron state in insulating VO2 through high-resolution spectroscopic ellipsometry measurements and first-principles calculations. We illustrate the complementary role of polaron dynamics in facilitating Peierls and Mott transitions, thereby contributing to the MIT processes. Furthermore, our observations and characterizations of conventional metallic and correlated plasmons in the respective phases of the VO2 film offer valuable insight into their electron structures. This investigation enhances comprehension of the MIT mechanism in correlated systems and underscores the roles of polarons, lattice distortions, and electron correlations in facilitating phase transition processes in strongly correlated systems. Additionally, the detailed detection of small polarons and plasmons serves as inspiration for the development of new device functionalities.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"45 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sibilla Orsini, Marco Lauricella, Andrea Montessori, Adriano Tiribocchi, Mihir Durve, Sauro Succi, Luana Persano, Andrea Camposeo, Dario Pisignano
{"title":"3D printing and artificial intelligence tools for droplet microfluidics: Advances in the generation and analysis of emulsions","authors":"Sibilla Orsini, Marco Lauricella, Andrea Montessori, Adriano Tiribocchi, Mihir Durve, Sauro Succi, Luana Persano, Andrea Camposeo, Dario Pisignano","doi":"10.1063/5.0228610","DOIUrl":"https://doi.org/10.1063/5.0228610","url":null,"abstract":"Droplet microfluidics has emerged as highly relevant technology in diverse fields such as nanomaterials synthesis, photonics, drug delivery, regenerative medicine, food science, cosmetics, and agriculture. While significant progress has been made in understanding the fundamental mechanisms underlying droplet generation in microchannels and in fabricating devices to produce droplets with varied functionality and high throughput, challenges persist along two important directions. On one side, the generalization of numerical results obtained by computational fluid dynamics would be important to deepen the comprehension of complex physical phenomena in droplet microfluidics, as well as the capability of predicting the device behavior. Conversely, truly three-dimensional architectures would enhance microfluidic platforms in terms of tailoring and enhancing droplet and flow properties. Recent advancements in artificial intelligence (AI) and additive manufacturing (AM) promise unequaled opportunities for simulating fluid behavior, precisely tracking individual droplets, and exploring innovative device designs. This review provides a comprehensive overview of recent progress in applying AI and AM to droplet microfluidics. The basic physical properties of multiphase flows and mechanisms for droplet production are discussed, and the current fabrication methods of related devices are introduced, together with their applications. Delving into the use of AI and AM technologies in droplet microfluidics, topics covered include AI-assisted simulations of droplet behavior, real-time tracking of droplets within microfluidic systems, and AM-fabrication of three-dimensional systems. The synergistic combination of AI and AM is expected to deepen the understanding of complex fluid dynamics and active matter behavior, expediting the transition toward fully digital microfluidic systems.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"28 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrokinetic energy harvesting over nanometer and sub-nanometer scales","authors":"Suman Chakraborty, Chirodeep Bakli, Debmalya Roy, Abhirup Chaudhuri, Aniruddha Guha, Aditya Patwari","doi":"10.1063/5.0241150","DOIUrl":"https://doi.org/10.1063/5.0241150","url":null,"abstract":"Electrokinetic energy harvesting (EKEH) has emerged as a promising renewable and carbon-neutral energy source for small and large-scale applications, reducing the reliance on conventional fossil fuels and providing innovative solutions for remote, off-grid applications. The underlying mechanism of EKEH relies on the movement of dissolved electrolytes over charged fluid–solid interfaces through confinements resulting in the generation of useful power. The low energy conversion efficiency typically observed in larger (micrometer) confinements can be substantially mitigated by shifting to nanometer and sub-nanometer regimes. This down-scaling unlocks high selectivity and provides unique opportunities to potentially harness Angstrom-scale interactions to maintain and elevate fluid permeability. However, EKEH at sub-nanometric scales remains fraught with considerable challenges in fabrication, economic viability, scaling of power, and maintenance, significantly impeding its advancement. In this review, we detail the electrokinetic processes that drive energy conversion in the presence of pressure, concentration, and temperature gradients. We examine the key factors affecting conversion efficiency and explore the innovative solutions in the recent literature addressing associated challenges. Additionally, we highlight the role of novel nanomaterials and specialized geometries along with new fabrication techniques that enable high permeation without sacrificing selectivity in nanometer and sub-nanometer confinements. Finally, we delve into the major obstacles that EKEH currently faces to reach its full potential of extracting clean and affordable energy and conclude by offering insight into future developmental directions and potential breakthroughs in this rapidly evolving field.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"70 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical and electrical properties of silica","authors":"D. K. Ferry, D. L. Rode","doi":"10.1063/5.0233576","DOIUrl":"https://doi.org/10.1063/5.0233576","url":null,"abstract":"Nominally pure silica or amorphous SiO2 is an important material in modern electronics, as well as other fields of science. Normally, it has been utilized for its insulation properties, for example, in metal-oxide-semiconductor devices. However, it also can be considered as a wide bandgap semiconductor possessing very large electrical resistivity. The conductivity of various silica films has been studied since the mid-nineteenth century, usually assuming the presence of ionic conductivity. However, in the sense of a wide bandgap semiconductor, the temperature dependence of the resistivity, which ranges over more than four orders of magnitude, can be accurately explained by normal semiconductor behavior under the presumed presence of a deep electron trap/donor residing ∼2.3 eV below the conduction band edge. That is, the conductance is determined by electron motion and not by ions. Experiments have studied the transport of injected electrons (and holes) which are consistent with this viewpoint.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"53 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preeyanghaa Mani, Sulakshana Shenoy, Prince J. J. Sagayaraj, Nithish Agamendran, Sanguk Son, Neppolian Bernaurdshaw, Hyoung-il Kim, Karthikeyan Sekar
{"title":"Scaling up of photocatalytic systems for large-scale hydrogen generation","authors":"Preeyanghaa Mani, Sulakshana Shenoy, Prince J. J. Sagayaraj, Nithish Agamendran, Sanguk Son, Neppolian Bernaurdshaw, Hyoung-il Kim, Karthikeyan Sekar","doi":"10.1063/5.0223598","DOIUrl":"https://doi.org/10.1063/5.0223598","url":null,"abstract":"Scaling up photocatalytic systems for large-scale hydrogen generation holds transformative potential for sustainable energy but faces significant technical and economic challenges in transitioning from lab-scale experiments to industrial applications. This review delves into recent innovations that drive progress in this field, including advanced materials developed for improved efficiency and stability, as well as innovative reactor designs that optimize light capture and reactant flow. It also examines practical strategies for the integration of these systems with renewable energy sources, focusing on their scalability and cost-effectiveness. Key challenges addressed include mass transport limitations, reactant utilization, and catalyst longevity, accompanied by emerging solutions that aim to overcome these hurdles. The review comprehensively explores the intersection of technological advancements and economic feasibility, emphasizing environmental and economic considerations necessary for the practical implementation of photocatalytic hydrogen production. Emphasizing the most recent developments and strategic approaches, this review outlines a pathway for advancing large-scale sustainable hydrogen generation technologies.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"25 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated functions of microfluidics and gravimetric sensing enabled by piezoelectric driven microstructures","authors":"Jingui Qian, Yue Wang, Yuhang Xue, Habiba Begum, Yong-Qing Fu, Joshua E.-Y. Lee","doi":"10.1063/5.0225891","DOIUrl":"https://doi.org/10.1063/5.0225891","url":null,"abstract":"Micro- and nano-electromechanical systems resonators have been regarded as powerful tools for precision mass detection, and their abilities to measure these in a liquid environment open various opportunities for biosensing, chemical analysis, and environmental monitoring. Apart from overcoming issues of fluidic damping and electrical interfaces, there is a great challenge of bringing microanalytes to these devices with the required precision and scaling for high throughput sensing. Herein, we address the above challenges by proposing a self-excited localized acoustic manipulation methodology based on a piezoelectric micromechanical diaphragm resonator (PMDR). Such a PMDR integrates acoustofluidics and mass sensing functions in tandem on a single device. Particle enrichment is realized within tens of seconds and the limit of detection is enhanced by mitigating common issues such as low capture rate and non-uniform distribution. The developed PMDR is versatile in its applicability to a range of particle sizes and densities for both acoustofluidic actuation and in situ mass sensing. This work addresses long-term technical challenges of inaccurate and inefficient measurement of liquid phase resonance mass sensing with great application potentials in biochemical detection and environmental monitoring.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"2 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhitao Lin, Xianguang Yang, Junda He, Ning Dong, Baojun Li
{"title":"Structural and optoelectronic characterization of anisotropic two-dimensional materials and applications in polarization-sensitive photodetectors","authors":"Zhitao Lin, Xianguang Yang, Junda He, Ning Dong, Baojun Li","doi":"10.1063/5.0226193","DOIUrl":"https://doi.org/10.1063/5.0226193","url":null,"abstract":"The omnipresence of polarized light on the surface of the earth, a result of atmospheric scattering, underscores the significance of detecting this light and extracting valuable information regarding the phase and polarization angle. In recent years, there has been a surge in research on polarization-sensitive photodetectors that utilize anisotropic two-dimensional (2D) materials. The essence of these 2D polarization-sensitive photodetectors is rooted in the anisotropic characteristics that arise from the asymmetric crystal lattice of the 2D materials in question. This anisotropy is manifested in both optical and electrical behaviors due to the asymmetrical nature of the crystal structure. This article systematically categorizes anisotropic 2D materials and offers an insightful overview of their crystal structures. It also introduces various optical and electrical characterization techniques designed to elucidate the anisotropic properties of these materials. The focus of the article then shifts to detailing the current state of research in the realm of anisotropic 2D material-based polarization-sensitive photodetectors. It provides a comprehensive description of the working principles behind polarization-sensitive photodetectors with different structural designs, shedding light on the underlying mechanisms that enable their polarization sensitivity. In conclusion, the article summarizes the findings of this review, highlighting the advancements and challenges in the field. Additionally, this review proposes several forward-looking recommendations to guide the future trajectory of research and development in the domain of 2D material-based polarization-sensitive photodetectors.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"15 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}