Weiping Kong, Fu Wan, Rui Wang, Hongcheng Sun, Weigen Chen
{"title":"Signal enhancement and noise suppression technologies in Raman spectroscopic gas sensing","authors":"Weiping Kong, Fu Wan, Rui Wang, Hongcheng Sun, Weigen Chen","doi":"10.1063/5.0225006","DOIUrl":"https://doi.org/10.1063/5.0225006","url":null,"abstract":"Raman spectroscopy, which enables simultaneous detection of multi-gas components, is considered a valuable tool for gas analysis. However, the weak Raman scattering effect limits its application in the field of high-sensitivity gas detection. In this article, we summarize the principles and characteristics of existing techniques for improving the detection of Raman spectra, from both the perspectives of signal enhancement and noise suppression. Regarding signal enhancement techniques, the main methods include multi-pass cavity enhancement, resonant cavity enhancement, and hollow-core fiber enhancement. As for noise suppression methods, the primary approaches include spatial filtering, shifted excitation Raman difference spectroscopy, polarized Raman spectroscopy, and internal standard correction. Finally, we present and outlook on how to further enhance the sensitivity of Raman spectroscopy based on existing techniques, which can lay the foundation for the future development of robust and easy-to-use gas analysis instruments.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"8 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomechanical and mechanobiological design for bioprinting functional microvasculature","authors":"Dongrui Zhang, Jiangyue Liu, Xiao Liu, Yubo Fan","doi":"10.1063/5.0227692","DOIUrl":"https://doi.org/10.1063/5.0227692","url":null,"abstract":"Functional microvasculature is essential for in vitro tissue constructs, ensuring efficient transport of oxygen, nutrients, and waste and supporting vital paracrine signaling for tissue stability. Recent advancements in both direct and indirect 3D bioprinting offer promising solutions to construct complex vascular networks by allowing precise control over cell and extracellular matrix placement. The process from shape printing of microvasculature to function formation involves dynamic shift of bioink mechanical properties, mechanical microenvironments, and mechanobiology of endothelial and supporting cells. This review explores how biomechanical and mechanobiological principles are integrated into the bioprinting process to develop functional microvascular networks. Before printing, a top-level design approach based on these principles focuses on the interactions among biomaterials, cell behaviors, and mechanical environments to guide microvascular network fabrication. During printing, biomechanical design of bioinks for different bioprinting techniques, along with optimized biomechanical factors of bioprinting process, ensures accurate microvascular structure reproduction while maintaining cell viability. After printing, the emphasis is on creating a suitable mechanical environment to modulate the mechanobiology of multiple steps of neovascularization, including initiation, morphogenesis, lumen formation, stabilization, and maturation of functional microvasculature. Finally, we discuss future developments based on biomechanical and mechanobiological design to drive the bioprinting of functionalized microvascular networks.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"19 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143640381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ansheed Raheem, Kalpana Mandal, Swarup Biswas, Amir Ahari, Alireza Hassani Najafabadi, Neda Farhadi, Fatemeh Zehtabi, Ankit Gangrade, Marvin Mecwan, Surjendu Maity, Saurabh Sharma, Joseph Nathanael Arputharaj, Pearlin Amaan Khan, Anjaneyulu Udduttula, Negar Hosseinzadeh Kouchehbaghi, Danial Khorsandi, Rajesh Vasita, Reihaneh Haghniaz, Rondinelli Donizetti Herculano, Johnson V. John, Hyeok Kim, Mehmet Remzi Dokmeci, Ketul C. Popat, Yangzhi Zhu, Geetha Manivasagam
{"title":"Smart biomaterials in healthcare: Breakthroughs in tissue engineering, immunomodulation, patient-specific therapies, and biosensor applications","authors":"Ansheed Raheem, Kalpana Mandal, Swarup Biswas, Amir Ahari, Alireza Hassani Najafabadi, Neda Farhadi, Fatemeh Zehtabi, Ankit Gangrade, Marvin Mecwan, Surjendu Maity, Saurabh Sharma, Joseph Nathanael Arputharaj, Pearlin Amaan Khan, Anjaneyulu Udduttula, Negar Hosseinzadeh Kouchehbaghi, Danial Khorsandi, Rajesh Vasita, Reihaneh Haghniaz, Rondinelli Donizetti Herculano, Johnson V. John, Hyeok Kim, Mehmet Remzi Dokmeci, Ketul C. Popat, Yangzhi Zhu, Geetha Manivasagam","doi":"10.1063/5.0238817","DOIUrl":"https://doi.org/10.1063/5.0238817","url":null,"abstract":"Smart biomaterials have significantly impacted human healthcare by advancing the development of medical devices designed to function within human tissue, mimicking the behavior of natural tissues. While the intelligence of biomaterials has evolved from inert to active over the past few decades, smart biomaterials take this a step further by making their surfaces or bulk respond based on interactions with surrounding tissues, imparting outcomes similar to natural tissue functions. This interaction with the surrounding tissue helps in creating stimuli-responsive biomaterials, which can be useful in tissue engineering, regenerative medicine, autonomous drug delivery, orthopedics, and much more. Traditionally, material engineering focused on refining the static properties of biomaterials to accommodate them within the body without evoking an immune response, which was a major obstacle to their unrestricted operation. This review highlights and explains various engineering approaches currently under research for developing stimuli-responsive biomaterials that tune their outcomes based on responses to bodily factors like temperature, pH, and ion concentration or external factors like magnetism, light, and conductivity. Applications in soft and hard tissue engineering, 4D printing, and scaffold design are also discussed. The advanced application of microfluidics, like organ-on-a-chip models, extensively benefits from the intrinsic smart properties of biomaterials, which are also discussed below. The review further elaborates on how smart biomaterial engineering could revolutionize biosensor applications, thereby improving patient care quality. We delineate the limitations and key challenges associated with biomaterials, providing insights into the path forward and outlining future directions for developing next-generation biomaterials that will facilitate clinical translation.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"1 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143640380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhengwu Fang, Jacob Smith, Kevin Clelland, Kang-Ting Tseng, Jeff Wolfenstine, Olivier Delaire, Jeff Sakamoto, Miaofang Chi
{"title":"Ionic conduction and interfacial stability in Na1+xZr2SixP3−xO12 solid electrolytes: Past, present, and future perspectives","authors":"Zhengwu Fang, Jacob Smith, Kevin Clelland, Kang-Ting Tseng, Jeff Wolfenstine, Olivier Delaire, Jeff Sakamoto, Miaofang Chi","doi":"10.1063/5.0241000","DOIUrl":"https://doi.org/10.1063/5.0241000","url":null,"abstract":"While the development of new solid electrolytes (SEs) is crucial for advancing energy storage technologies, revisiting existing materials with significantly improved knowledge of their physical properties and synthesis control offers significant opportunities for breakthroughs. Na1+xZr2SixP3−xO12 (NaSICON) SEs have recently regained attention for applications in both solid-state and aqueous redox flow batteries due to their improved electrochemical and mechanical properties, along with their inherent electrochemical stability, air robustness, and low manufacturing cost. Recent improvements in NaSICON have primarily targeted macroscopic property enhancements and synthesis techniques. To enable further breakthroughs in the performance of NaSICON SEs, future efforts should focus on understanding how modified synthesis conditions influence atomic and microscopic-scale features, such as conduction channels, electronic structures, phase distributions, and grain boundaries. These features ultimately control ion conductivity, mechanical properties, and electrochemical stability of NaSICON and its interfaces. Here, we review the current understanding of the structure-chemistry-property relationships of NaSICON SEs, focusing on atomic and microscopic levels. First, we introduce the proposed ionic conduction mechanisms in NaSICON crystallites. Then, we explore experimental investigations at phase and grain boundaries to assess ionic conduction and interfacial stability. We also examine strategies to address interfacial challenges such as high resistance and chemical reactions between SEs and electrodes, highlighting the difficulties in analyzing interfaces at the nano/atomic scale. Finally, we provide an outlook on advancing microscopy and spectroscopy techniques to enhance insights into NaSICON SEs ionic conduction and interfacial stability, supporting the development of improved long-duration energy storage devices.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"124 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Kowal, S. Mahato, M. Makowski, S. Hartati, M. A. K. Sheikh, W. Ye, D. R. Schaart, J. Cybinska, L. J. Wong, A. Arramel, M. D. Birowosuto
{"title":"Current trends in material research for nuclear batteries: Harnessing metal perovskite halides and other chalcogenides for greater compactness and efficiency","authors":"D. Kowal, S. Mahato, M. Makowski, S. Hartati, M. A. K. Sheikh, W. Ye, D. R. Schaart, J. Cybinska, L. J. Wong, A. Arramel, M. D. Birowosuto","doi":"10.1063/5.0236524","DOIUrl":"https://doi.org/10.1063/5.0236524","url":null,"abstract":"Nuclear energy emerges as a promising and environmentally friendly solution to counter the escalating levels of greenhouse gases resulting from excessive fossil fuel usage. Essential to harnessing this energy are nuclear batteries, devices designed to generate electric power by capturing the energy emitted during nuclear decay, including α or β particles and γ radiation. The allure of nuclear batteries lies in their potential for extended lifespan, high energy density, and adaptability in harsh environments where refueling or battery replacement may not be feasible. In this review, we narrow our focus to nuclear batteries utilizing non-thermal converters such as α- or β-voltaics, as well as those employing scintillation intermediates. Recent advancements in state-of-the-art direct radiation detectors and scintillators based on metal perovskite halides (MPHs) and chalcogenides (MCs) are compared to traditional detectors based on silicon and III-V materials, and scintillators based on inorganic lanthanide crystals. Notable achievements in MPH and MC detectors and scintillators, such as nano-Gy sensitivity, 100 photons/keV light yield, and radiation hardness, are highlighted. Additionally, limitations including energy conversion efficiency, power density, and shelf-life due to radiation damage in detectors and scintillators are discussed. Leveraging novel MPH and MC materials has the potential to propel nuclear batteries from their current size and power limitations to miniaturization, heightened efficiency, and increased power density. Furthermore, exploring niche applications for nuclear batteries beyond wireless sensors, low-power electronics, oil well monitoring, and medical fields presents enticing opportunities for future research and development.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"3 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naimul Arefin, Hur-E-Jannat Moni, David Espinosa, Weilong Cong, Minxiang Zeng
{"title":"Multi-material additive manufacturing of energy storage and conversion devices: Recent progress and future prospects","authors":"Naimul Arefin, Hur-E-Jannat Moni, David Espinosa, Weilong Cong, Minxiang Zeng","doi":"10.1063/5.0235864","DOIUrl":"https://doi.org/10.1063/5.0235864","url":null,"abstract":"The ever-increasing energy demand has highlighted the need for sustainable, low-carbon, and multi-functional energy solutions. Recently, multi-material additive manufacturing (MMAM) has become an emerging processing approach to prototype energy storage and conversion devices by enabling the fabrication of complex systems in a single, streamlined process while offering design freedom to customize end-product properties at precise, user-defined patterns and geometries. Moreover, it provides opportunities to fine-tune interfaces and material compositions at the microscale, opening new avenues for next-generation energy storage and conversion devices. As MMAM is still in its early stages, a comprehensive understanding of the interplay between material chemistry, processing methods, and device design is fundamental to fully realize its potential for developing high-performance energy materials. This review proposes a framework to bridge the gaps between the fundamental principles of processing physics and the practical implementation of various MMAM techniques in fabricating advanced energy storage and conversion devices, highlighting research challenges and future opportunities.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"290 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid-metal-assisted exfoliation of 2D β-Ga2O3 with high anisotropy ratio for solar-blind detection and polarization imaging","authors":"Weiheng Zhong, Hong Huang, Yuqing Liu, Jiawei Jing, Wentao Wu, Weizhen Liu, Xiaolong Zhao, Shibing Long, Haiyang Xu","doi":"10.1063/5.0252741","DOIUrl":"https://doi.org/10.1063/5.0252741","url":null,"abstract":"Solar-blind UV polarization detection and imaging can reflect more detailed optical information, which is vital for developing next-generation deep UV optoelectronic devices. β-Ga2O3 with ultra-wide bandgap is an ideal candidate for solar-blind UV detection application. However, the bulky nature of Ga2O3 limits its application in miniaturized, integrated and multifunctional devices, and polarization imaging based on Ga2O3 photodetector has not yet been realized. Here, we report a convenient method to prepare 2D β-Ga2O3 flakes via liquid-metal-assisted exfoliation. Benefiting from high crystallinity and polarization-sensitive absorption of prepared ultrathin β-Ga2O3 flake in monoclinic structure, the β-Ga2O3 photodetector exhibits an ultra-fast response speed (100/78 μs for rise/decay time) and a prominent anisotropy ratio (∼2.8) of polarization photoresponse under 265 nm illumination. An unambiguous detection of linearly polarized light has also been realized by the double symmetry-breaking of twisted β-Ga2O3 photodetectors. Moreover, a four-layer twistedly stacked detection system further enables a one-step and well-defined polarization imaging with high resolution (150 × 150 pixels) to acquire spatial polarization information. This work presents a novel strategy for preparing ultrathin 2D gallium oxides and demonstrates a promising route to realize well-defined solar-blind polarization imaging in a simple manner.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"5 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physics-informed learning in artificial electromagnetic materials","authors":"Y. Deng, K. Fan, B. Jin, J. Malof, W. J. Padilla","doi":"10.1063/5.0232675","DOIUrl":"https://doi.org/10.1063/5.0232675","url":null,"abstract":"The advent of artificial intelligence—deep neural networks (DNNs) in particular—has transformed traditional research methods across many disciplines. DNNs are data driven systems that use large quantities of data to learn patterns that are fundamental to a process. In the realm of artificial electromagnetic materials (AEMs), a common goal is to discover the connection between the AEM's geometry and material properties to predict the resulting scattered electromagnetic fields. To achieve this goal, DNNs usually utilize computational electromagnetic simulations to act as ground truth data for the training process, and numerous successful results have been shown. Although DNNs have many demonstrated successes, they are limited by their requirement for large quantities of data and their lack of interpretability. The latter results because DNNs are black-box models, and therefore, it is unknown how or why they work. A promising approach which may help to mitigate the aforementioned limitations is to use physics to guide the development and operation of DNNs. Indeed, this physics-informed learning (PHIL) approach has seen rapid development in the last few years with some success in addressing limitations of conventional DNNs. We overview the field of PHIL and discuss the benefits of incorporating knowledge into the deep learning process and introduce a taxonomy that enables us to categorize various types of approaches. We also summarize deep learning principles which are critical to PHIL understanding and the Appendix covers some of the physics of AEMs. A few specific PHIL works are highlighted and serve as examples of various approaches. Finally, we provide an outlook detailing where the field is currently and what we can expect in the future.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"86 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Brand, Victor Rosendal, Yichen Wu, Thomas Tran, Alessandro Palliotto, Igor V. Maznichenko, Sergey Ostanin, Vincenzo Esposito, Arthur Ernst, Shengqiang Zhou, Dae-Sung Park, Nini Pryds
{"title":"Defect-induced magnetic symmetry breaking in oxide materials","authors":"Eric Brand, Victor Rosendal, Yichen Wu, Thomas Tran, Alessandro Palliotto, Igor V. Maznichenko, Sergey Ostanin, Vincenzo Esposito, Arthur Ernst, Shengqiang Zhou, Dae-Sung Park, Nini Pryds","doi":"10.1063/5.0216796","DOIUrl":"https://doi.org/10.1063/5.0216796","url":null,"abstract":"Magnetic properties of crystalline solids are fundamental to a wide range of applications, capturing the attention of a vast scientific community. Thus, engineering magnetic order in materials such as ferromagnetism and antiferromagnetism holds great scientific and technological interest. Defects such as vacancies, interstitials, and dopants induce local perturbations within the crystal lattice. These perturbations locally disturb the entire symmetry of crystals, resulting in symmetry breaking. Oxides, in particular, exhibit intriguing properties when subjected to defects, which can lead to significant modifications in their structural, electronic, and magnetic properties. Such defects in non-magnetic oxides can induce magnetic symmetry breaking, leading to the formation of emergent magnetic domains and orderings. In this review, we focus on the recent progress in magnetic breaking symmetries in materials via defect engineering and present our perspectives on how these may lead to new understanding and applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"40 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143589992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient shift of ferromagnetic resonance by superconductor gating","authors":"Jiaxu Li, Jie Zhang, Guang Yang, Weisheng Zhao","doi":"10.1063/5.0231497","DOIUrl":"https://doi.org/10.1063/5.0231497","url":null,"abstract":"The proximity effect has long been recognized as the primary driver of static transport behavior in superconductor/ferromagnetic heterostructures, yet the understanding of magnetic dynamics in this context remains limited. Here, we demonstrate a significant shift of ferromagnetic resonance spectra in ferromagnetic films placed between two superconductor gating layers. Through deliberate modifications of the interface structure using various insertion layers, we have determined that the superconducting proximity effect has a minimal impact on the modulation of ferromagnetic resonance characteristics. Instead, our findings strongly support very recent theoretical predictions that emphasize the phenomenon of ultrastrong coupling between Kittel magnons and Cooper pairs arising from the superconducting magnetoelectric effect. We propose that this ultrastrong coupling not only provides a precise method for determining superconducting parameters like the London penetration depth but also lays the foundation for the manipulation of spin waves through superconductors in future magnonic circuits.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"26 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143569761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}