Sandeep Kumar Lakhera, K. Priyanga Kangeyan, Crescentia Yazhini S, Shiny Golda A, Neppolian Bernaurdshaw
{"title":"Advances in hybrid strategies for enhanced photocatalytic water splitting: Bridging conventional and emerging methods","authors":"Sandeep Kumar Lakhera, K. Priyanga Kangeyan, Crescentia Yazhini S, Shiny Golda A, Neppolian Bernaurdshaw","doi":"10.1063/5.0218539","DOIUrl":"https://doi.org/10.1063/5.0218539","url":null,"abstract":"Significant efforts have been dedicated to hydrogen production through photocatalytic water splitting (PWS) over the past five decades. However, achieving commercially viable solar-to-hydrogen conversion efficiency in PWS systems remains elusive. These systems face intrinsic and extrinsic challenges, such as inadequate light absorption, insufficient charge separation, limited redox active sites, low surface area, and scalability issues in practical designs. To address these issues, conventional strategies including heterojunction engineering, plasmonics, hybridization, lattice defects, sensitization, and upconversion processes have been extensively employed. More recently, innovative hybrid strategies like photonic crystal-assisted and polarization field-assisted PWS have emerged, which improve light absorption and charge separation by harnessing the slow photon effect, multiple light scattering, and the piezoelectric, pyroelectric, and ferroelectric properties of materials. This review article aims to provide a comprehensive examination and summary of these new synergistic hybrid approaches, integrating plasmonic effects, upconversion processes, and photonic crystal photocatalysis. It also explores the role of temperature in suppressing exciton recombination during photothermic photocatalysis. This article also highlights emerging strategies such as the effects of magnetic fields, periodic illumination, many-body large-hole polaron, and anapole excitations, which hold significant potential to advance PWS technology and facilitate renewable hydrogen generation.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"13 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxia Shen, Chongwen Li, Cheng Liu, Samantha Ann Reitz, Bin Chen, Edward H. Sargent
{"title":"The impact of interface and heterostructure on the stability of perovskite-based solar cells","authors":"Yuxia Shen, Chongwen Li, Cheng Liu, Samantha Ann Reitz, Bin Chen, Edward H. Sargent","doi":"10.1063/5.0210109","DOIUrl":"https://doi.org/10.1063/5.0210109","url":null,"abstract":"Perovskite solar cells have made significant progress in achieving high power conversion efficiency (>26%) in the past decade. However, achieving long-term stability comparable to established silicon solar cells is still a significant challenge, requiring further investigation into degradation mechanisms and continued exploration of interface engineering strategies. Here we review stability at the interfaces between perovskite and charge transport layers. These interfaces are particularly vulnerable to defects and degradation under external stresses such as heat, light, and bias, further compounded by their ionic nature and thermal expansion mismatch. To address these issues, strategies such as the use of additives, organic self-assembled monolayers, and low-dimensional perovskites have been developed to improve interface stability. These approaches enhance crystallinity, reduce defect-related recombination, and improve mechanical toughness.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"54 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probing slow glass dynamics down to 10−5 Hz","authors":"Xi-Ming Yang, Qun Yang, Tao Zhang, Hai-Bin Yu","doi":"10.1063/5.0206556","DOIUrl":"https://doi.org/10.1063/5.0206556","url":null,"abstract":"Relaxation processes play a crucial role in glassy materials. However, current dielectric or mechanical spectroscopy typically reaches a lower limit of around 10−1 or 10−2 Hz, which restricts the exploration of long-time dynamics and stability. Here, we propose a mechanical protocol that enables the probing of relaxation processes down to 10−5 Hz, extending the lower limit by ∼3–4 orders of magnitude. The effectiveness of this method is demonstrated in investigating metallic glasses, where the primary and secondary relaxations are detected over an extended timescale. An additional relaxation process has been captured below 10−4 Hz, indicating the emergence of more complex relaxation phenomena over longer timescales. This progress in probing long-term dynamics opens up new possibilities for advancing glassy physics and material properties.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"64 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob P. Quint, Evelyn Mollocana-Lara, Mohamadmahdi Samandari, Su Ryon Shin, Indranil Sinha, Ali Tamayol
{"title":"A robotic arm with open-source reconstructive workflow for in vivo bioprinting of patient-specific scaffolds","authors":"Jacob P. Quint, Evelyn Mollocana-Lara, Mohamadmahdi Samandari, Su Ryon Shin, Indranil Sinha, Ali Tamayol","doi":"10.1063/5.0197123","DOIUrl":"https://doi.org/10.1063/5.0197123","url":null,"abstract":"In vivo bioprinting, fabricating tissue-engineered implants directly in a patient, was recently developed to overcome the logistical and clinical limitations of traditional bioprinting. In vivo printing reduces the time to treatment, allows for real-time reconstructive adjustments, minimizes transportation challenges, improves adhesion to remnant tissue and ensuing tissue integration, and utilizes the body as a bioreactor. Unfortunately, most in vivo printers are frame-based systems with limited working areas that are incompatible with the human body and lack portability. Robotic arms have recently been used to resolve these challenges, but developed systems suffered from complex deposition or cross-linking modalities and lacked bioink temperature control, drastically limiting the use of biologically favorable bioinks. Here, we created a portable and affordable robotic arm bioprinter with precise control over bioink temperature. The system maintained biomaterial ink temperatures from 6 to 60 ± 0.05 °C. We tested a bioprinting optimization strategy with different temperature-sensitive bioinks. In addition, we engineered a personalized in vivo printing strategy derived from in situ scanning and model reconstruction that utilizes freely available and open-source software. We further demonstrated the benefits of human-derived bioinks made of blood components. The system and the proposed human-derived bioinks pave the way toward the personalization of scaffold-based regenerative medicine.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"41 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suk Hyun Lee, Han Sol Park, Seong Jae Shin, In Soo Lee, Seung Kyu Ryoo, Seungyong Byun, Kyung Do Kim, Taehwan Moon, Cheol Seong Hwang
{"title":"Investigation of ferro-resistive switching mechanisms in TiN/Hf0.5Zr0.5O2/WOx/W ferroelectric tunnel junctions with the interface layer effect","authors":"Suk Hyun Lee, Han Sol Park, Seong Jae Shin, In Soo Lee, Seung Kyu Ryoo, Seungyong Byun, Kyung Do Kim, Taehwan Moon, Cheol Seong Hwang","doi":"10.1063/5.0224203","DOIUrl":"https://doi.org/10.1063/5.0224203","url":null,"abstract":"This study presents an in-depth analysis of ferro-resistive switching (FRS) behaviors in a TiN/Hf0.5Zr0.5O2(HZO)/WOx/W ferroelectric tunnel junction (FTJ) device, with a particular focus on the role of the tungsten oxide (WOx) interface layer (IL). Structural examinations confirm the presence of the WOx IL, which significantly influences the FRS properties of the device. Electrical measurements indicate the devices exhibit stable and reproducible FRS characteristics with an ON/OFF ratio of 9.7, predominantly attributed to the tunneling electro-resistance (TER) effect driven by the ferroelectric polarization. Comprehensive numerical simulations, incorporating the nucleation-limited switching model and Simmons tunneling mechanism, provide detailed insights into how the WOx IL and the trapped charges at the HZO/WOx interface affect polarization switching mechanisms and the electronic potential barrier profile. These findings underscore the importance of interface effects in HfO2-based FTJs and advance the understanding of the TER mechanism in multilayer ferroelectric systems.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"8 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indrajit Mondal, Rohit Attri, Tejaswini S. Rao, Bhupesh Yadav, Giridhar U. Kulkarni
{"title":"Recent trends in neuromorphic systems for non-von Neumann in materia computing and cognitive functionalities","authors":"Indrajit Mondal, Rohit Attri, Tejaswini S. Rao, Bhupesh Yadav, Giridhar U. Kulkarni","doi":"10.1063/5.0220628","DOIUrl":"https://doi.org/10.1063/5.0220628","url":null,"abstract":"In the era of artificial intelligence and smart automated systems, the quest for efficient data processing has driven exploration into neuromorphic systems, aiming to replicate brain functionality and complex cognitive actions. This review assesses, based on recent literature, the challenges and progress in developing basic neuromorphic systems, focusing on “material-neuron” concepts, that integrate structural similarities, analog memory, retention, and Hebbian learning of the brain, contrasting with conventional von Neumann architecture and spiking circuits. We categorize these devices into filamentary and non-filamentary types, highlighting their ability to mimic synaptic plasticity through external stimuli manipulation. Additionally, we emphasize the importance of heterogeneous neural content to support conductance linearity, plasticity, and volatility, enabling effective processing and storage of various types of information. Our comprehensive approach categorizes fundamentally different devices under a generalized pattern dictated by the driving parameters, namely, the pulse number, amplitude, duration, interval, as well as the current compliance employed to contain the conducting pathways. We also discuss the importance of hybridization protocols in fabricating neuromorphic systems making use of existing complementary metal oxide semiconductor technologies being practiced in the silicon foundries, which perhaps ensures a smooth translation and user interfacing of these new generation devices. The review concludes by outlining insights into developing cognitive systems, current challenges, and future directions in realizing deployable neuromorphic systems in the field of artificial intelligence.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"12 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Speed of sound for understanding metals in extreme environments","authors":"Elizabeth G. Rasmussen, Boris Wilthan","doi":"10.1063/5.0186669","DOIUrl":"https://doi.org/10.1063/5.0186669","url":null,"abstract":"Knowing material behavior is crucial for successful design, especially given the growing number of next-generation energy, defense, and manufacturing systems operating in extreme environments. Specific applications for materials in extreme environments include fusion energy, semiconductor manufacturing, metal additive manufacturing, and aerospace. With increased applications, awareness of foundational science for materials in extreme environments is imperative. The speed of sound provides insights into phase boundaries, like shock-induced melting. Thermodynamic integration of the speed of sound enables the deduction of other desirable properties that are difficult to measure accurately, like density, heat capacity, and expansivity. Metrology advancements enable the speed of sound to be measured at extreme conditions up to 15 000 K and 600 GPa. This comprehensive review presents state-of-the-art sound speed metrology while contextualizing it through a historical lens. Detailed discussions on new standards and metrology best practices, including uncertainty reporting, are included. Data availability for condensed matter speed of sound is presented, highlighting significant gaps in the literature. A theoretical section covers empirically based theoretical models like equations of state and CALPHAD models, the growing practice of using molecular dynamics and density functional theory simulations to fill gaps in measured data, and the use of artificial intelligence and machine learning prediction tools. Concluding, we review how a lack of measurement methods leads to gaps in data availability, which leads to data-driven theoretical models having higher uncertainty, thus limiting confidence in optimizing designs via numerical simulation for critical emerging technologies in extreme environments.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"62 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery","authors":"Wendi Gao, Yunfei Bai, Yujie Yang, Lanlan Jia, Yingbiao Mi, Wenji Cui, Dehua Liu, Adnan Shakoor, Libo Zhao, Junyang Li, Tao Luo, Dong Sun, Zhuangde Jiang","doi":"10.1063/5.0211141","DOIUrl":"https://doi.org/10.1063/5.0211141","url":null,"abstract":"The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"223 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Agglomeration phenomenon in graphene/polymer nanocomposites: Reasons, roles, and remedies","authors":"Afshin Zeinedini, Mahmood Mehrdad Shokrieh","doi":"10.1063/5.0223785","DOIUrl":"https://doi.org/10.1063/5.0223785","url":null,"abstract":"The addition of low-loading content of nanofillers may improve the material properties of polymer-based nanocomposites. This improvement directly corresponds to the density of well-dispersed nanofillers in the matrix. However, for higher nanofiller loadings, the nanocomposites' material properties not only may not be improved but also may be degraded due to agglomeration. This complex phenomenon, where nanofillers tend to form agglomerates with the enhancement of volume fraction, poses significant challenges in materials science and nanotechnology. It has been proven that agglomerations hinder the performance of the nanocomposites and thwart the unique properties of nanofillers in most aspects. Graphene, one of the most used nanofillers, plays a remarkable role in nanotechnology. Therefore, the key focus of the current review is to provide insight into the impact of agglomeration on the various material properties such as tensile, flexural, fracture, fatigue, thermal, electrical, and barrier characteristics of the polymer nanocomposites reinforced by graphene-based structures. A comprehensive review of the factors leading to the agglomeration of graphene in the nanocomposites was presented. It was concluded that agglomeration could be a barrier to developing polymer-based nanocomposites, and the challenges of controlling the nanofiller agglomerations were discussed in depth, highlighting the issue's complexity.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"66 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated mid-infrared sensing and ultrashort lasers based on wafer-level Td-WTe2 Weyl semimetal","authors":"Di Wu, Zhiheng Mo, Xue Li, Xiaoyan Ren, Zhifeng Shi, Xinjian Li, Ling Zhang, Xuechao Yu, Hexuan Peng, Longhui Zeng, Chong-Xin Shan","doi":"10.1063/5.0204248","DOIUrl":"https://doi.org/10.1063/5.0204248","url":null,"abstract":"There is an urgent need for infrared (IR) detection systems with high-level miniaturization and room-temperature operation capability. The rising star of two-dimensional (2D) semimetals with extraordinary optoelectronic properties can fulfill these criteria. However, the formidable challenges with regard to large-scale patterning and substrate-selective requirements limit material deposition options for device fabrication. Here, we report a convenient and straightforward eutectic-tellurization transformation method for the wafer-level synthesis of 2D type-II Weyl semimetal WTe2. The non-cryogenic WTe2/Si Schottky junction device displays an ultrawide detection range covering 10.6 μm with a high detectivity of ∼109 Jones in the mid-infrared (MIR) region and a short response time of 1.3 μs. The detection performance has surpassed most reported IR sensors. On top of that, on-chip device arrays based on Schottky junction display an outstanding MIR imaging capability without cryogenic cooling, and 2D WTe2 Weyl semimetal can serve as a saturable absorber for stable Q-switched and mode-locked laser operation applications. Our work offers a viable route for wafer-scale vdW preparation of 2D semimetals, showcasing their intriguing potential in on-chip integrated MIR detection systems and ultrafast laser photonics.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"9 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}