APL PhotonicsPub Date : 2024-05-09DOI: 10.1063/5.0197018
M. R. M. Atalla, C. Lemieux-Leduc, S. Assali, S. Koelling, P. Daoust, O. Moutanabbir
{"title":"Extended short-wave infrared high-speed all-GeSn PIN photodetectors on silicon","authors":"M. R. M. Atalla, C. Lemieux-Leduc, S. Assali, S. Koelling, P. Daoust, O. Moutanabbir","doi":"10.1063/5.0197018","DOIUrl":"https://doi.org/10.1063/5.0197018","url":null,"abstract":"There is an increasing need for silicon-compatible high-bandwidth extended-short wave infrared (e-SWIR) photodetectors (PDs) to implement cost-effective and scalable optoelectronic devices. These systems are quintessential to address several technological bottlenecks in detection and ranging, surveillance, ultrafast spectroscopy, and imaging. In fact, current e-SWIR high-bandwidth PDs are predominantly made of III–V compound semiconductors and thus are costly and suffer a limited integration on silicon besides a low responsivity at wavelengths exceeding 2.3 μm. To circumvent these challenges, Ge1−xSnx semiconductors have been proposed as building blocks for silicon-integrated high-speed e-SWIR devices. Herein, this study demonstrates vertical all-GeSn PIN PDs consisting of p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-Ge0.89Sn0.11 and p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13 heterostructures grown on silicon following a step-graded temperature-controlled epitaxy protocol. The performance of these PDs was investigated as a function of the device diameter in the 10–30 μm range. The developed PD devices yield a high bandwidth of 12.4 GHz at a bias of 5 V for a device diameter of 10 μm. Moreover, these devices show a high responsivity of 0.24 A/W, a low noise, and a 2.8 μm cutoff wavelength, thus covering the whole e-SWIR range.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"34 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APL PhotonicsPub Date : 2024-05-07DOI: 10.1063/5.0203117
Zhengzhong Huang, Liangcai Cao
{"title":"k-space holographic multiplexing for synthetic aperture diffraction tomography","authors":"Zhengzhong Huang, Liangcai Cao","doi":"10.1063/5.0203117","DOIUrl":"https://doi.org/10.1063/5.0203117","url":null,"abstract":"Optical diffraction tomography can be performed with low phototoxicity and photobleaching to analyze 3D cells and tissues. It is desired to develop high throughput and powerful data processing capabilities. We propose high bandwidth holographic microscopy (HBHM). Based on the analyticity of complex amplitudes, the unified holographic multiplexing transfer function is established. A high bandwidth scattering field is achieved via the k-space optical origami of two 2D wavefronts from one interferogram. Scanning illumination modulates the high-horizontal and axial k-space to endow synthetic-aperture from 2D high space-bandwidth product (SBP) scattering fields. The bright-field counterpart SBP of a single scattering field from HBHM is 14.6 megapixels, while the number of pixels is only 13.7 megapixels. It achieves an eight-fold SBP enhancement under the same number of pixels and diffraction limit. The HBHM paves the way toward the performance of high throughput, large-scale, and non-invasive histopathology, cell biology, and industrial inspection.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"65 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of non-Hermitian skin effect by staggered synthetic gauge fields","authors":"Huiyan Tang, Ziteng Wang, Liqin Tang, Daohong Song, Zhigang Chen, Hrvoje Buljan","doi":"10.1063/5.0196844","DOIUrl":"https://doi.org/10.1063/5.0196844","url":null,"abstract":"Synthetic gauge fields introduce an unconventional degree of freedom for studying many fundamental phenomena in different branches of physics. Here, we propose a scheme to use staggered synthetic gauge fields for control of the non-Hermitian skin effect (NHSE). A modified Su–Schrieffer–Heeger model is employed, where two dimer chains with non-reciprocal coupling phases are coupled, exhibiting non-trivial point-gap topology and the NHSE. In contrast to previous studies, the skin modes in our model are solely determined by the coupling phase terms associated with the staggered synthetic gauge fields. By manipulating such gauge fields, we can achieve maneuvering of skin modes as well as the bipolar NHSE. As a typical example, we set up a domain wall by imposing different synthetic gauge fields on two sides of the wall, thereby demonstrating flexible control of the non-Hermitian skin modes at the domain wall. Our scheme opens a new avenue for the creation and manipulation of NHSE by synthetic gauge fields, which may find applications in beam shaping and non-Hermitian topological devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"23 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APL PhotonicsPub Date : 2024-04-26DOI: 10.1063/5.0195141
Ali Zeineddine, Moein Shayegannia, Nazir P. Kherani, Joel Y. Y. Loh
{"title":"Exploiting graded triangular gratings for optimal nano-focusing: A novel approach to enhance SERS efficiency","authors":"Ali Zeineddine, Moein Shayegannia, Nazir P. Kherani, Joel Y. Y. Loh","doi":"10.1063/5.0195141","DOIUrl":"https://doi.org/10.1063/5.0195141","url":null,"abstract":"Plasmonic graded nano-gratings enable rainbow trapping of multiple resonant modes over a wide wavelength spectrum, useful for multi-channel Surface Enhanced Raman Spectroscopy (SERS) of molecular species. However, rectangular nano-gratings have limitations in achieving efficient rainbow trapping and localizing a wide spectrum of plasmonic modes due to their stepwise geometry, which induces high dissipation of surface plasmon polaritons into the substrate. An alternative platform of graded triangular nano-gratings enables increased localization and more efficient adiabatic transformation between neighboring grooves. Varying groove angles, depths, and periods in the tapered geometry allow for smooth adjustment of the surface plasmon polariton propagation constant, reducing losses and maximizing nano-focusing inside the groove tips. To overcome the limitation of low aspect ratio in wet-etching silicon, we employed a multi-step process of reactive ion etching of a SiO2 barrier layer to generate aperture width, followed by anisotropic wet-etching. The resulting graded triangular nano-gratings showed excellent SERS enhancement along three laser wavelength excitations. The enhancement factors of 638 and 785 nm wavelengths are 8.5 × 109 and 9 × 108, respectively, for the detection of 1 µM Rhodamine 6G. In addition, graded triangular nano-gratings show similar enhancement factors for other species, specifically the lipid DPEE-PEG, at the 532 nm laser excitation wavelength with an excellent SERS enhancement factor of 1.5 × 109. Owing to the ability of the graded triangular gratings to elicit pronounced SERS responses across three distinct laser excitations, they unequivocally qualify as “rainbow trapping” structures. Wider apertures, lower ohmic losses, and the ability to tune the groove angle beyond conventional etching methods bode well for graded triangular gratings as a superior platform for miniature sensors.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"65 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APL PhotonicsPub Date : 2024-04-26DOI: 10.1063/5.0197081
Junjian Lu, Tian Sang, Chui Pian, Siyuan Ouyang, Ze Jing
{"title":"Tailoring intrinsic chiroptical responses via twisted bilayer α-MoO3 separated by a VO2 film","authors":"Junjian Lu, Tian Sang, Chui Pian, Siyuan Ouyang, Ze Jing","doi":"10.1063/5.0197081","DOIUrl":"https://doi.org/10.1063/5.0197081","url":null,"abstract":"Flexible control of intrinsic chiroptical responses within compact nanostructures is crucial for flat optics, topological photonics, and chiroptics. However, previous approaches require complicated patterns with both in-plane and out-of-plane mirror symmetry breaking to achieve intrinsic chirality, and their chiroptical responses cannot be dynamically controlled as well. Herein, we demonstrated that near-perfect intrinsic circular dichroism (CD) can be achieved within a lithography-free structure consisting of the twisted bilayer α-MoO3 separated by a vanadium dioxide (VO2) film. By twisting the bilayer α-MoO3, dual-band intrinsic chiroptical responses can be realized due to the excitations of the hyperbolic phonon polaritons modes in the mid-infrared. It is the spin-selected average electric-field enhancement instead of the chiral absorption that is responsible for the intrinsic CD of the device. In addition, the chiroptical responses are insensitive to the variation of the thickness of the structure as well as the incident angle, and high contrast CD can be dynamically tuned by varying the volume fraction of VO2.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"36 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APL PhotonicsPub Date : 2024-04-19DOI: 10.1063/5.0172554
Peyman Parsa, Prasoon Kumar Shandilya, David P. Lake, Matthew E. Mitchell, Paul E. Barclay
{"title":"Feedback enhanced phonon lasing of a microwave frequency resonator","authors":"Peyman Parsa, Prasoon Kumar Shandilya, David P. Lake, Matthew E. Mitchell, Paul E. Barclay","doi":"10.1063/5.0172554","DOIUrl":"https://doi.org/10.1063/5.0172554","url":null,"abstract":"The amplitude of self-oscillating mechanical resonators in cavity optomechanical systems is typically limited by nonlinearities arising from the cavity’s finite optical bandwidth. We propose and demonstrate a feedback technique for increasing this limit. By modulating the cavity input field with a signal derived from its output intensity, we increase the amplitude of a self-oscillating GHz frequency mechanical resonator by 22% (an increase in coherent phonon number of 50%), limited only by the achievable optomechanical cooperativity of the system. This technique will advance applications dependent on high dynamic mechanical stress, such as coherent spin-phonon coupling, as well as the implementation of sensors based on self-oscillating resonators.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"87 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal flux manipulation on the silicon photonic chip to suppress the thermal crosstalk","authors":"Nannan Ning, Qiang Zhang, Qikai Huang, Yuehai Wang, Bihu Lv, Kun Yin, Jianyi Yang, Hui Yu","doi":"10.1063/5.0193387","DOIUrl":"https://doi.org/10.1063/5.0193387","url":null,"abstract":"The integration density of silicon photonic integrated circuit (PIC) is ultimately constrained by various crosstalk mechanisms on the chip. Among them, the most prominent limiting factor is the thermal crosstalk due to the wide use of the thermo-optic effect. High-density silicon PICs strongly demand an advanced structure with better thermal crosstalk suppression ability than the traditional air isolation trench. Inspired by the thermal-metamaterial based on the scattering-cancellation method, we demonstrate a closed heat shield (CHS) structure on a silicon PIC chip, which can manipulate the thermal flux to bypass the temperature-sensitive silicon photonics components. The on-chip CHS structure is a bilayer cylindrical shell fabricated by the standard silicon photonics processing flow. Its outer and inner shell layers are formed by a 6-μm-wide interconnection metal and 4-μm-wide air trench, respectively. Plenty of temperature-sensitive micro-ring resonators inside the CHS are used to probe the temperature profile. The measurement results show that the CHS can reduce the local temperatures by 50%/44%/36% at the locations 29/41/83 μm away from the external heater. In contrast, the conventional air trench of the same dimension reduces the local temperatures by 32%/28%/21% at the same positions. In addition, the response time of the thermal field inside the CHS is around one-half of that in the conventional air trench. Furthermore, the simulation result indicates that if the outer shell of the CHS can contact with the silicon substrate by utilizing the through-silicon-via structure, the thermal crosstalk suppression ability can be improved significantly.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"73 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APL PhotonicsPub Date : 2024-04-05DOI: 10.1063/5.0192223
Xiaofei Li, Xin Liu, Quanying Wu, Jun Zeng, Yangjian Cai, Sergey A. Ponomarenko, Chunhao Liang
{"title":"Prime number factorization with light beams carrying orbital angular momentum","authors":"Xiaofei Li, Xin Liu, Quanying Wu, Jun Zeng, Yangjian Cai, Sergey A. Ponomarenko, Chunhao Liang","doi":"10.1063/5.0192223","DOIUrl":"https://doi.org/10.1063/5.0192223","url":null,"abstract":"We point out a link between orbital angular momentum (OAM) carrying light beams and number theory. The established link makes it possible to formulate and implement a simple and ultrafast protocol for prime number factorization by employing OAM endowed beams that are modulated by a prime number sieve. We are able to differentiate factors from non-factors of a number by simply measuring the on-axis intensity of light in the rear focal plane of a thin lens focusing on a source beam. The proposed protocol solely relies on the periodicity of the OAM phase distribution, and hence, it is applicable to fully as well as partially coherent fields of any frequency and physical nature—from optical or x-ray to matter waves—endowed with OAM. Our experimental results are in excellent agreement with our theory. We anticipate that our protocol will trigger new developments in optical cryptography and information processing with OAM beams.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"104 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APL PhotonicsPub Date : 2024-04-05DOI: 10.1063/5.0183704
Isaac Doughan, Atsu L. Asilevi, Atri Halder, Tian-Long Guo, Erika Mogni, Michele Celebrano, Marco Finazzi, Giovanni Pellegrini, Paolo Biagioni, Emiliano Descrovi, Matthieu Roussey, Jari Turunen
{"title":"Temporal and spectral signatures of the interaction between ultrashort laser pulses and Bloch surface waves","authors":"Isaac Doughan, Atsu L. Asilevi, Atri Halder, Tian-Long Guo, Erika Mogni, Michele Celebrano, Marco Finazzi, Giovanni Pellegrini, Paolo Biagioni, Emiliano Descrovi, Matthieu Roussey, Jari Turunen","doi":"10.1063/5.0183704","DOIUrl":"https://doi.org/10.1063/5.0183704","url":null,"abstract":"The resonant excitation of Bloch Surface Waves (BSWs) in dielectric one-dimensional photonic crystals is becoming a realistic photonic solution for surface integration in many domains, from spectroscopy to local field management. Bringing BSWs to ultrafast and nonlinear regimes requires a deep knowledge of the effects that the photonic crystal dispersion and the resonant surface wave excitation have on the ultrashort laser pulses. We report on the experimental evidence of spectral and temporal modifications of the radiation leaving a planar one-dimensional photonic crystal after coupling to BSWs. In such a resonant condition, a characteristic long temporal tail is observed in the outgoing pulses. Observations are performed by employing both frequency-resolved optical gating and field cross-correlation techniques.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"5 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APL PhotonicsPub Date : 2024-04-04DOI: 10.1063/5.0192239
Rihito Tamura, Praveen Kumar, A. Srinivasa Rao, Kazuki Tsuda, Fanny Getzlaff, Katsuhiko Miyamoto, Natalia M. Litchinitser, Takashige Omatsu
{"title":"Direct imprint of optical skyrmions in azopolymers as photoinduced relief structures","authors":"Rihito Tamura, Praveen Kumar, A. Srinivasa Rao, Kazuki Tsuda, Fanny Getzlaff, Katsuhiko Miyamoto, Natalia M. Litchinitser, Takashige Omatsu","doi":"10.1063/5.0192239","DOIUrl":"https://doi.org/10.1063/5.0192239","url":null,"abstract":"Skyrmions, topologically stable configurations of a three-component vector field with sophisticated textures, have been considered in many contexts, including atomic physics, Bose–Einstein condensates, liquid crystals, and magnetic materials. Although optical counterparts of skyrmions have extensively been studied theoretically and recently demonstrated in the laboratory experiments, their experimental mapping is challenging due to the fine, three-dimensional, and complicated structure of their polarization distributions. Here, we propose and demonstrate a straightforward mapping of the polarization textures of optical Néel-, Bloch-, and anti-skyrmions based on the radiation pressure and direct imprinting of the skyrmion textures on azopolymers. These results not only elucidate the exotic interaction that occurs between topologically protected quasiparticles of light and matter but also provide a simple approach for generation and characterization of optical skyrmions, based on a dual-path polarization shaping configuration with a single spatial light modulator, and their measurements based on the radiation pressure.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"37 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}