{"title":"用于合成孔径衍射层析成像的 k 空间全息复用技术","authors":"Zhengzhong Huang, Liangcai Cao","doi":"10.1063/5.0203117","DOIUrl":null,"url":null,"abstract":"Optical diffraction tomography can be performed with low phototoxicity and photobleaching to analyze 3D cells and tissues. It is desired to develop high throughput and powerful data processing capabilities. We propose high bandwidth holographic microscopy (HBHM). Based on the analyticity of complex amplitudes, the unified holographic multiplexing transfer function is established. A high bandwidth scattering field is achieved via the k-space optical origami of two 2D wavefronts from one interferogram. Scanning illumination modulates the high-horizontal and axial k-space to endow synthetic-aperture from 2D high space-bandwidth product (SBP) scattering fields. The bright-field counterpart SBP of a single scattering field from HBHM is 14.6 megapixels, while the number of pixels is only 13.7 megapixels. It achieves an eight-fold SBP enhancement under the same number of pixels and diffraction limit. The HBHM paves the way toward the performance of high throughput, large-scale, and non-invasive histopathology, cell biology, and industrial inspection.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"65 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-space holographic multiplexing for synthetic aperture diffraction tomography\",\"authors\":\"Zhengzhong Huang, Liangcai Cao\",\"doi\":\"10.1063/5.0203117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical diffraction tomography can be performed with low phototoxicity and photobleaching to analyze 3D cells and tissues. It is desired to develop high throughput and powerful data processing capabilities. We propose high bandwidth holographic microscopy (HBHM). Based on the analyticity of complex amplitudes, the unified holographic multiplexing transfer function is established. A high bandwidth scattering field is achieved via the k-space optical origami of two 2D wavefronts from one interferogram. Scanning illumination modulates the high-horizontal and axial k-space to endow synthetic-aperture from 2D high space-bandwidth product (SBP) scattering fields. The bright-field counterpart SBP of a single scattering field from HBHM is 14.6 megapixels, while the number of pixels is only 13.7 megapixels. It achieves an eight-fold SBP enhancement under the same number of pixels and diffraction limit. The HBHM paves the way toward the performance of high throughput, large-scale, and non-invasive histopathology, cell biology, and industrial inspection.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0203117\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0203117","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
光学衍射断层扫描可以在低光毒性和光漂白的情况下分析三维细胞和组织。我们希望开发高通量和强大的数据处理能力。我们提出了高带宽全息显微技术(HBHM)。基于复振幅的可分析性,建立了统一的全息复用传递函数。通过一个干涉图的两个二维波面的 k 空间光学折纸,实现了高带宽散射场。扫描照明调制高水平和轴向 k 空间,赋予二维高空间带宽乘积(SBP)散射场合成孔径。HBHM 单个散射场的明场对应 SBP 为 1460 万像素,而像素数仅为 1370 万像素。在相同的像素数和衍射极限下,它实现了八倍的 SBP 增强。HBHM 为实现高通量、大规模和无创组织病理学、细胞生物学和工业检测铺平了道路。
k-space holographic multiplexing for synthetic aperture diffraction tomography
Optical diffraction tomography can be performed with low phototoxicity and photobleaching to analyze 3D cells and tissues. It is desired to develop high throughput and powerful data processing capabilities. We propose high bandwidth holographic microscopy (HBHM). Based on the analyticity of complex amplitudes, the unified holographic multiplexing transfer function is established. A high bandwidth scattering field is achieved via the k-space optical origami of two 2D wavefronts from one interferogram. Scanning illumination modulates the high-horizontal and axial k-space to endow synthetic-aperture from 2D high space-bandwidth product (SBP) scattering fields. The bright-field counterpart SBP of a single scattering field from HBHM is 14.6 megapixels, while the number of pixels is only 13.7 megapixels. It achieves an eight-fold SBP enhancement under the same number of pixels and diffraction limit. The HBHM paves the way toward the performance of high throughput, large-scale, and non-invasive histopathology, cell biology, and industrial inspection.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.