Annual review of physiology最新文献

筛选
英文 中文
Spatial Transcriptomics of the Respiratory System. 呼吸系统的空间转录组学。
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2024-10-01 DOI: 10.1146/annurev-physiol-022724-105144
Stathis Megas, Anna Wilbrey-Clark, Aidan Maartens, Sarah A Teichmann, Kerstin B Meyer
{"title":"Spatial Transcriptomics of the Respiratory System.","authors":"Stathis Megas, Anna Wilbrey-Clark, Aidan Maartens, Sarah A Teichmann, Kerstin B Meyer","doi":"10.1146/annurev-physiol-022724-105144","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-105144","url":null,"abstract":"<p><p>Over the last decade, single-cell genomics has revealed remarkable heterogeneity and plasticity of cell types in the lungs and airways. The challenge now is to understand how these cell types interact in three-dimensional space to perform lung functions, facilitating airflow and gas exchange while simultaneously providing barrier function to avoid infection. An explosion in novel spatially resolved gene expression technologies, coupled with computational tools that harness machine learning and deep learning, now promise to address this challenge. Here, we review the most commonly used spatial analysis workflows, highlighting their advantages and limitations, and outline recent developments in machine learning and artificial intelligence that will augment how we interpret spatial data. Together these technologies have the potential to transform our understanding of the respiratory system in health and disease, and we showcase studies in lung development, COVID-19, lung cancer, and fibrosis where spatially resolved transcriptomics is already providing novel insights.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialized Pulmonary Vascular Cells in Development and Disease. 发育和疾病中的特化肺血管细胞
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2024-09-25 DOI: 10.1146/annurev-physiol-022724-105226
Arnav Sharma, Terren K Niethamer
{"title":"Specialized Pulmonary Vascular Cells in Development and Disease.","authors":"Arnav Sharma, Terren K Niethamer","doi":"10.1146/annurev-physiol-022724-105226","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-105226","url":null,"abstract":"<p><p>Endothelial cells (ECs) develop organ-specific gene expression and function in response to signals from the surrounding tissue. In turn, ECs can affect organ development and morphogenesis and promote or hinder disease response. In the lung, ECs play an essential role in gas exchange with the external environment, requiring both a close physical connection and a strong axis of communication with alveolar epithelial cells. A complete picture of the composition of the pulmonary endothelium is therefore critical for a full understanding of development, maintenance, and repair of the gas exchange interface. Defining the factors that control lung-specific EC specification, establish EC heterogeneity within the lung, and promote the differing contributions of EC subtypes to development, health, and disease will facilitate the development of much-needed regenerative therapies. This includes targeting therapeutics directly to ECs, developing pluripotent or primary cell-derived ECs to replace damaged or diseased vasculature, and vascularizing engineered tissues for transplant.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proresolving Lipid Mediators in the Respiratory System. 呼吸系统中的前溶脂介质
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2024-09-20 DOI: 10.1146/annurev-physiol-020924-033209
Charles N Serhan, Bruce D Levy
{"title":"Proresolving Lipid Mediators in the Respiratory System.","authors":"Charles N Serhan, Bruce D Levy","doi":"10.1146/annurev-physiol-020924-033209","DOIUrl":"10.1146/annurev-physiol-020924-033209","url":null,"abstract":"<p><p>Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose Tissue in Cardiovascular Disease: From Basic Science to Clinical Translation. 心血管疾病中的脂肪组织:从基础科学到临床翻译。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-06-11 DOI: 10.1146/annurev-physiol-042222-021346
Murray D Polkinghorne, Henry W West, Charalambos Antoniades
{"title":"Adipose Tissue in Cardiovascular Disease: From Basic Science to Clinical Translation.","authors":"Murray D Polkinghorne, Henry W West, Charalambos Antoniades","doi":"10.1146/annurev-physiol-042222-021346","DOIUrl":"10.1146/annurev-physiol-042222-021346","url":null,"abstract":"<p><p>The perception of adipose tissue as a metabolically quiescent tissue, primarily responsible for lipid storage and energy balance (with some endocrine, thermogenic, and insulation functions), has changed. It is now accepted that adipose tissue is a crucial regulator of metabolic health, maintaining bidirectional communication with other organs including the cardiovascular system. Additionally, adipose tissue depots are functionally and morphologically heterogeneous, acting not only as sources of bioactive molecules that regulate the physiological functioning of the vasculature and myocardium but also as biosensors of the paracrine and endocrine signals arising from these tissues. In this way, adipose tissue undergoes phenotypic switching in response to vascular and/or myocardial signals (proinflammatory, profibrotic, prolipolytic), a process that novel imaging technologies are able to visualize and quantify with implications for clinical prognosis. Furthermore, a range of therapeutic modalities have emerged targeting adipose tissue metabolism and altering its secretome, potentially benefiting those at risk of cardiovascular disease.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"175-198"},"PeriodicalIF":18.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Crowding: Physiologic Sensing and Control. 分子拥挤:生理传感与控制。
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-11-06 DOI: 10.1146/annurev-physiol-042222-025920
Arohan R Subramanya, Cary R Boyd-Shiwarski
{"title":"Molecular Crowding: Physiologic Sensing and Control.","authors":"Arohan R Subramanya, Cary R Boyd-Shiwarski","doi":"10.1146/annurev-physiol-042222-025920","DOIUrl":"10.1146/annurev-physiol-042222-025920","url":null,"abstract":"<p><p>The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"429-452"},"PeriodicalIF":15.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. 肠绒毛细胞:形态、功能和对人类健康的意义。
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-10-20 DOI: 10.1146/annurev-physiol-042022-030310
Jennifer B Silverman, Paige N Vega, Matthew J Tyska, Ken S Lau
{"title":"Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health.","authors":"Jennifer B Silverman, Paige N Vega, Matthew J Tyska, Ken S Lau","doi":"10.1146/annurev-physiol-042022-030310","DOIUrl":"10.1146/annurev-physiol-042022-030310","url":null,"abstract":"<p><p>Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"479-504"},"PeriodicalIF":15.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mineralocorticoid Receptor in the Vasculature: Friend or Foe? 血管中的矿皮质激素受体:朋友还是敌人?
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-10-03 DOI: 10.1146/annurev-physiol-042022-015223
Jaime Ibarrola, Iris Z Jaffe
{"title":"The Mineralocorticoid Receptor in the Vasculature: Friend or Foe?","authors":"Jaime Ibarrola, Iris Z Jaffe","doi":"10.1146/annurev-physiol-042022-015223","DOIUrl":"10.1146/annurev-physiol-042022-015223","url":null,"abstract":"<p><p>Originally described as the renal aldosterone receptor that regulates sodium homeostasis, it is now clear that mineralocorticoid receptors (MRs) are widely expressed, including in vascular endothelial and smooth muscle cells. Ample data demonstrate that endothelial and smooth muscle cell MRs contribute to cardiovascular disease in response to risk factors (aging, obesity, hypertension, atherosclerosis) by inducing vasoconstriction, vascular remodeling, inflammation, and oxidative stress. Extrapolating from its role in disease, evidence supports beneficial roles of vascular MRs in the context of hypotension by promoting inflammation, wound healing, and vasoconstriction to enhance survival from bleeding or sepsis. Advances in understanding how vascular MRs become activated are also reviewed, describing transcriptional, ligand-dependent, and ligand-independent mechanisms. By synthesizing evidence describing how vascular MRs convert cardiovascular risk factors into disease (the vascular MR as a foe), we postulate that the teleological role of the MR is to coordinate responses to hypotension (the MR as a friend).</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"49-70"},"PeriodicalIF":18.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41107955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BK Channelopathies and KCNMA1-Linked Disease Models. BK通道病和KCNMA1相关疾病模型。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-10-31 DOI: 10.1146/annurev-physiol-030323-042845
Andrea L Meredith
{"title":"BK Channelopathies and <i>KCNMA1</i>-Linked Disease Models.","authors":"Andrea L Meredith","doi":"10.1146/annurev-physiol-030323-042845","DOIUrl":"10.1146/annurev-physiol-030323-042845","url":null,"abstract":"<p><p>Novel <i>KCNMA1</i> variants<i>,</i> encoding the BK K<sup>+</sup> channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of <i>KCNMA1</i>-associated symptomology is unknown. This review summarizes patient-associated <i>KCNMA1</i> variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function <i>KCNMA1</i> neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic <i>KCNMA1</i>-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"277-300"},"PeriodicalIF":18.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of the Microbiome in the Etiopathogenesis of Colon Cancer. 微生物组在结肠癌发病机制中的作用。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2024-02-12 DOI: 10.1146/annurev-physiol-042022-025619
Geniver El Tekle, Natalia Andreeva, Wendy S Garrett
{"title":"The Role of the Microbiome in the Etiopathogenesis of Colon Cancer.","authors":"Geniver El Tekle, Natalia Andreeva, Wendy S Garrett","doi":"10.1146/annurev-physiol-042022-025619","DOIUrl":"10.1146/annurev-physiol-042022-025619","url":null,"abstract":"<p><p>Studies in preclinical models support that the gut microbiota play a critical role in the development and progression of colorectal cancer (CRC). Specific microbial species and their corresponding virulence factors or associated small molecules can contribute to CRC development and progression either via direct effects on the neoplastic transformation of epithelial cells or through interactions with the host immune system. Induction of DNA damage, activation of Wnt/β-catenin and NF-κB proinflammatory pathways, and alteration of the nutrient's availability and the metabolic activity of cancer cells are the main mechanisms by which the microbiota contribute to CRC. Within the tumor microenvironment, the gut microbiota alter the recruitment, activation, and function of various immune cells, such as T cells, macrophages, and dendritic cells. Additionally, the microbiota shape the function and composition of cancer-associated fibroblasts and extracellular matrix components, fashioning an immunosuppressive and pro-tumorigenic niche for CRC. Understanding the complex interplay between gut microbiota and tumorigenesis can provide therapeutic opportunities for the prevention and treatment of CRC.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"86 ","pages":"453-478"},"PeriodicalIF":18.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating Striated Muscle Contraction: Through Thick and Thin. 调节横纹肌收缩:通过厚和薄。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-11-06 DOI: 10.1146/annurev-physiol-042222-022728
Elisabetta Brunello, Luca Fusi
{"title":"Regulating Striated Muscle Contraction: Through Thick and Thin.","authors":"Elisabetta Brunello, Luca Fusi","doi":"10.1146/annurev-physiol-042222-022728","DOIUrl":"10.1146/annurev-physiol-042222-022728","url":null,"abstract":"<p><p>Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"255-275"},"PeriodicalIF":18.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信