{"title":"Preterm Brain Injury: Mechanisms and Challenges.","authors":"Michael J Beacom, Alistair J Gunn, Laura Bennet","doi":"10.1146/annurev-physiol-022724-104754","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-104754","url":null,"abstract":"<p><p>Preterm fetuses and newborns have a high risk of neural injury and impaired neural maturation, leading to neurodevelopmental disability. Developing effective treatments is rather challenging, as preterm brain injury may occur at any time during pregnancy and postnatally, and many cases involve multiple pathogenic factors. This review examines research on how the preterm fetus responds to hypoxia-ischemia and how brain injury evolves after hypoxia-ischemia, offering windows of opportunity for treatment and insights into the mechanisms of injury during key phases. We highlight research showing that preterm fetuses can survive hypoxia-ischemia and continue development in utero with evolving brain injury. Early detection of fetal brain injury would provide an opportunity for treatments to reduce adverse neurodevelopmental outcomes, including cerebral palsy. However, this requires that we can detect injury using noninvasive methods. We discuss how circadian changes in fetal heart rate variability may offer utility as a biomarker for detecting injury and phases of injury.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein Tyrosine Phosphatases in Metabolism: A New Frontier for Therapeutics.","authors":"Anton M Bennett, Tony Tiganis","doi":"10.1146/annurev-physiol-022724-105540","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-105540","url":null,"abstract":"<p><p>The increased prevalence of chronic metabolic disorders, including obesity and type 2 diabetes and their associated comorbidities, are among the world's greatest health and economic challenges. Metabolic homeostasis involves a complex interplay between hormones that act on different tissues to elicit changes in the storage and utilization of energy. Such processes are mediated by tyrosine phosphorylation-dependent signaling, which is coordinated by the opposing actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Perturbations in the functions of PTPs can be instrumental in the pathophysiology of metabolic diseases. The goal of this review is to highlight key advances in our understanding of how PTPs control body weight and glucose metabolism, as well as their contributions to obesity and type 2 diabetes. The emerging appreciation of the integrated functions of PTPs in metabolism, coupled with significant advances in pharmaceutical strategies aimed at targeting this class of enzymes, marks the advent of a new frontier in combating metabolic disorders.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Calcium Homeostasis of Human Red Blood Cells in Health and Disease: Interactions of PIEZO1, the Plasma Membrane Calcium Pump, and Gardos Channels.","authors":"Virgilio L Lew","doi":"10.1146/annurev-physiol-022724-105119","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-105119","url":null,"abstract":"<p><p>Calcium ions mediate the volume homeostasis of human red blood cells (RBCs) in the circulation. The mechanism by which calcium ions affect RBC hydration states always follows the same sequence. Deformation of RBCs traversing capillaries briefly activates mechanosensitive PIEZO1 channels, allowing Ca2+ influx down its steep inward gradient transiently overcoming the calcium pump and elevating [Ca2+]<sub>i</sub>. Elevated [Ca2+]<sub>i</sub> activates the Ca2+-sensitive Gardos channels, inducing KCl loss and cell dehydration, a sequence operated with infinite variations in vivo and under experimental conditions. The selected health and disease themes for this review focus on landmark experimental results that led to the development of highly constrained models of the circulatory changes in RBCs homeostasis. Based on model predictions, a new perspective emerged, pointing to PIEZO1 dysfunction as the main trigger in the formation of the profoundly dehydrated irreversible sickle cells, the main pathogenic participants in vaso-occlusion, the root cause of sickle cell disease.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sex Differences in Electrophysiology and Calcium Handling in Atrial Health and Fibrillation.","authors":"Charlotte E R Smith, Haibo Ni, Eleonora Grandi","doi":"10.1146/annurev-physiol-022724-104938","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-104938","url":null,"abstract":"<p><p>The importance of biological sex on disease etiology and outcomes has long been underinvestigated. While recent focus on characterizing sex differences in cardiac pathophysiology has led to improved inclusion of both sexes in scientific studies and clinical trials, much is still unknown about underlying differences in normal cardiac physiology. This is particularly true for the atria, where the most common arrhythmia, atrial fibrillation (AF), occurs. AF is associated with adverse structural, electrophysiological, and calcium handling remodeling that leads to patient morbidity and mortality. Differences in the onset, prevalence, presentation, and prognosis of AF are known to differ between males and females, yet the sex-specific baseline phenotypes from which AF arises are not well characterized. This review examines what is currently known about sex differences in atrial physiology, the alterations that occur in AF, potential mechanisms underlying sex divergence, and the need for sex-targeted therapeutic strategies.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transport and Immune Functions of the Lymphatic System.","authors":"Michael J Davis, Scott D Zawieja, Philip D King","doi":"10.1146/annurev-physiol-022724-104908","DOIUrl":"10.1146/annurev-physiol-022724-104908","url":null,"abstract":"<p><p>Two major functions of the lymphatic system are the reabsorption of excess interstitial fluid/protein and the coordination of immune cell interactions and trafficking. Specialized junctions between lymphatic endothelial cells optimize reabsorption. The spontaneous contractions of collecting vessels provide active lymph propulsion. One-way valves prevent backflow, and chemokine gradients direct the migration of immune cells. Specialized compartments within the lymph node facilitate antigen-immune cell interactions to produce innate and acquired immunity. Lymphatic injury and/or mutations in genes controlling vessel/valve development result in contractile/valve dysfunction, reduced immune cell trafficking and, ultimately, lymphedema. Activated CD4+ T cells produce inflammatory mediators that exacerbate these processes, potentially leading to interstitial and lymphatic vessel remodeling and negatively impacting overall function. Mouse models have advanced our knowledge of lymphatic disease, but clinical trials to reduce the impact of inflammatory mediators have yielded mixed success, implying that additional factors underlying human lymphedema are not yet understood.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stathis Megas, Anna Wilbrey-Clark, Aidan Maartens, Sarah A Teichmann, Kerstin B Meyer
{"title":"Spatial Transcriptomics of the Respiratory System.","authors":"Stathis Megas, Anna Wilbrey-Clark, Aidan Maartens, Sarah A Teichmann, Kerstin B Meyer","doi":"10.1146/annurev-physiol-022724-105144","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-105144","url":null,"abstract":"<p><p>Over the last decade, single-cell genomics has revealed remarkable heterogeneity and plasticity of cell types in the lungs and airways. The challenge now is to understand how these cell types interact in three-dimensional space to perform lung functions, facilitating airflow and gas exchange while simultaneously providing barrier function to avoid infection. An explosion in novel spatially resolved gene expression technologies, coupled with computational tools that harness machine learning and deep learning, now promise to address this challenge. Here, we review the most commonly used spatial analysis workflows, highlighting their advantages and limitations, and outline recent developments in machine learning and artificial intelligence that will augment how we interpret spatial data. Together these technologies have the potential to transform our understanding of the respiratory system in health and disease, and we showcase studies in lung development, COVID-19, lung cancer, and fibrosis where spatially resolved transcriptomics is already providing novel insights.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Specialized Pulmonary Vascular Cells in Development and Disease.","authors":"Arnav Sharma, Terren K Niethamer","doi":"10.1146/annurev-physiol-022724-105226","DOIUrl":"https://doi.org/10.1146/annurev-physiol-022724-105226","url":null,"abstract":"<p><p>Endothelial cells (ECs) develop organ-specific gene expression and function in response to signals from the surrounding tissue. In turn, ECs can affect organ development and morphogenesis and promote or hinder disease response. In the lung, ECs play an essential role in gas exchange with the external environment, requiring both a close physical connection and a strong axis of communication with alveolar epithelial cells. A complete picture of the composition of the pulmonary endothelium is therefore critical for a full understanding of development, maintenance, and repair of the gas exchange interface. Defining the factors that control lung-specific EC specification, establish EC heterogeneity within the lung, and promote the differing contributions of EC subtypes to development, health, and disease will facilitate the development of much-needed regenerative therapies. This includes targeting therapeutics directly to ECs, developing pluripotent or primary cell-derived ECs to replace damaged or diseased vasculature, and vascularizing engineered tissues for transplant.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proresolving Lipid Mediators in the Respiratory System.","authors":"Charles N Serhan, Bruce D Levy","doi":"10.1146/annurev-physiol-020924-033209","DOIUrl":"10.1146/annurev-physiol-020924-033209","url":null,"abstract":"<p><p>Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2024-02-12Epub Date: 2023-11-06DOI: 10.1146/annurev-physiol-042222-025920
Arohan R Subramanya, Cary R Boyd-Shiwarski
{"title":"Molecular Crowding: Physiologic Sensing and Control.","authors":"Arohan R Subramanya, Cary R Boyd-Shiwarski","doi":"10.1146/annurev-physiol-042222-025920","DOIUrl":"10.1146/annurev-physiol-042222-025920","url":null,"abstract":"<p><p>The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"429-452"},"PeriodicalIF":15.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2024-02-12Epub Date: 2023-10-20DOI: 10.1146/annurev-physiol-042022-030310
Jennifer B Silverman, Paige N Vega, Matthew J Tyska, Ken S Lau
{"title":"Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health.","authors":"Jennifer B Silverman, Paige N Vega, Matthew J Tyska, Ken S Lau","doi":"10.1146/annurev-physiol-042022-030310","DOIUrl":"10.1146/annurev-physiol-042022-030310","url":null,"abstract":"<p><p>Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"479-504"},"PeriodicalIF":15.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}