Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-022724-105311
Katharina Maisel, Hasina Outtz Reed
{"title":"The Lymphatic Vasculature in Lung Homeostasis and Disease.","authors":"Katharina Maisel, Hasina Outtz Reed","doi":"10.1146/annurev-physiol-022724-105311","DOIUrl":"10.1146/annurev-physiol-022724-105311","url":null,"abstract":"<p><p>The lymphatic vasculature maintains lung homeostasis via fluid drainage in the form of lymph and by facilitating immune surveillance and leukocyte trafficking to the draining lymph nodes. Previous studies in both humans and animal models have demonstrated an important role for lymphatics in lung function from the neonatal period through adulthood. In addition, changes in the lymphatic vasculature have been observed in many respiratory diseases, and there is emerging evidence of a causative role for lymphatic dysfunction in the initiation and progression of lung pathology. Despite advances in the field, there are still many unanswered questions, and a more comprehensive understanding of the mechanisms by which the lymphatics affect lung homeostasis and the response to lung injury is needed. In this review, we discuss our current knowledge of the structure, function, and role of the lymphatics in the lung and how these vessels are involved in respiratory disease.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"421-446"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-022724-105205
Bradley S Launikonis, Robyn M Murphy
{"title":"From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals.","authors":"Bradley S Launikonis, Robyn M Murphy","doi":"10.1146/annurev-physiol-022724-105205","DOIUrl":"10.1146/annurev-physiol-022724-105205","url":null,"abstract":"<p><p>For physiological processes in the vital organs of eutherian mammals to function, it is important to maintain constant core body temperature at ∼37°C. Mammals generate heat internally by thermogenesis. The focus of this review is on heat generated in resting skeletal muscles, using the same cellular components that muscles use to regulate cytoplasmic calcium concentrations [Ca2+] and contraction. Key to this process, known as muscle-based nonshivering thermogenesis (MB-NST), are tiny Ca2+ movements and associated ATP turnover coordinated by the plasma membrane, sarcoplasmic reticulum (SR), and the mitochondria. MB-NST has made mammals with gain-of-function SR ryanodine receptor (RyR) variants vulnerable to excessive heat generation that can be potentially lethal, known as malignant hyperthermia. Studies of RyR variants using recently developed techniques have advanced our understanding of MB-NST.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"131-150"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-022724-105330
Kirill S Korshunov, Murali Prakriya
{"title":"Store-Operated Calcium Channels in the Nervous System.","authors":"Kirill S Korshunov, Murali Prakriya","doi":"10.1146/annurev-physiol-022724-105330","DOIUrl":"10.1146/annurev-physiol-022724-105330","url":null,"abstract":"<p><p>Store-operated Ca2+ entry (SOCE) is a widespread mechanism of cellular Ca2+ signaling that arises from Ca2+ influx across the plasma membrane through the Orai family of calcium channels in response to depletion of intracellular Ca2+ stores. Orai channels are a crucial Ca2+ entry mechanism in both neurons and glia and are activated by a unique inside-out gating process involving interactions with the endoplasmic reticulum Ca2+ sensors, STIM1 and STIM2. Recent evidence indicates that SOCE is broadly found across all areas of the nervous system where its physiology and pathophysiology is only now beginning to be understood. Here, we review the growing literature on the mechanisms of SOCE in the nervous system and contributions to gene expression, neuronal excitability, synaptic plasticity, and behavior. We also explore the burgeoning links between SOCE and neurological disease and discuss therapeutic implications of targeting SOCE for brain disorders.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"173-199"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-022724-105050
Annet Kirabo, Sepiso K Masenga, Thomas R Kleyman
{"title":"Epithelial Na+ Channels, Immune Cells, and Salt.","authors":"Annet Kirabo, Sepiso K Masenga, Thomas R Kleyman","doi":"10.1146/annurev-physiol-022724-105050","DOIUrl":"10.1146/annurev-physiol-022724-105050","url":null,"abstract":"<p><p>Epithelial Na+ channels (ENaCs) are known to affect blood pressure through their role in transporting Na+ in the distal nephron of the kidney. While expressed in other epithelial tissues, there is growing evidence that ENaCs are also expressed in nonepithelial tissues where their activity influences blood pressure. This review provides an overview of ENaCs and key mechanisms that regulate channel activity. The role of ENaCs in antigen-presenting dendritic cells is discussed, where ENaC-dependent sensing of increases in the extracellular Na+ concentration leads to activation of a signaling cascade, T cell activation with the release of proinflammatory cytokines, and an increase in blood pressure. The potential contribution of this pathway to human hypertension is discussed.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"381-395"},"PeriodicalIF":19.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-022724-104908
Michael J Davis, Scott D Zawieja, Philip D King
{"title":"Transport and Immune Functions of the Lymphatic System.","authors":"Michael J Davis, Scott D Zawieja, Philip D King","doi":"10.1146/annurev-physiol-022724-104908","DOIUrl":"10.1146/annurev-physiol-022724-104908","url":null,"abstract":"<p><p>Two major functions of the lymphatic system are the reabsorption of excess interstitial fluid/protein and the coordination of immune cell interactions and trafficking. Specialized junctions between lymphatic endothelial cells optimize reabsorption. The spontaneous contractions of collecting vessels provide active lymph propulsion. One-way valves prevent backflow, and chemokine gradients direct the migration of immune cells. Specialized compartments within the lymph node facilitate antigen-immune cell interactions to produce innate and acquired immunity. Lymphatic injury and/or mutations in genes controlling vessel/valve development result in contractile/valve dysfunction, reduced immune cell trafficking and, ultimately, lymph-edema. Activated CD4+ T cells produce inflammatory mediators that exacerbate these processes, potentially leading to interstitial and lymphatic vessel remodeling and negatively impacting overall function. Mouse models have advanced our knowledge of lymphatic disease, but clinical trials to reduce the impact of inflammatory mediators have yielded mixed success, implying that additional factors underlying human lymphedema are not yet understood.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"151-172"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-022724-104754
Michael J Beacom, Alistair J Gunn, Laura Bennet
{"title":"Preterm Brain Injury: Mechanisms and Challenges.","authors":"Michael J Beacom, Alistair J Gunn, Laura Bennet","doi":"10.1146/annurev-physiol-022724-104754","DOIUrl":"10.1146/annurev-physiol-022724-104754","url":null,"abstract":"<p><p>Preterm fetuses and newborns have a high risk of neural injury and impaired neural maturation, leading to neurodevelopmental disability. Developing effective treatments is rather challenging, as preterm brain injury may occur at any time during pregnancy and postnatally, and many cases involve multiple pathogenic factors. This review examines research on how the preterm fetus responds to hypoxia-ischemia and how brain injury evolves after hypoxia-ischemia, offering windows of opportunity for treatment and insights into the mechanisms of injury during key phases. We highlight research showing that preterm fetuses can survive hypoxia-ischemia and continue development in utero with evolving brain injury. Early detection of fetal brain injury would provide an opportunity for treatments to reduce adverse neurodevelopmental outcomes, including cerebral palsy. However, this requires that we can detect injury using noninvasive methods. We discuss how circadian changes in fetal heart rate variability may offer utility as a biomarker for detecting injury and phases of injury.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"79-106"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chloride-Dependent Cation Transport via <i>SLC12</i> Carriers at Atomic Resolution.","authors":"Eric Delpire","doi":"10.1146/annurev-physiol-022624-020130","DOIUrl":"10.1146/annurev-physiol-022624-020130","url":null,"abstract":"<p><p>The <i>SLC12</i> family of genes encodes electroneutral Cl--dependent cation transporters (i.e., Na-Cl, K-Cl, Na-K-2Cl cotransporters), which play significant roles in maintaining cell and body homeostasis. Recent resolution of their structures at the atomic level provides a new understanding how these transporters operate in health and disease and how they are targeted for therapeutic intervention. Overall, the SLC12 transporter cryo-EM structures confirm some key features established by traditional biochemical and molecular methods, such as the presence of 12 transmembrane domains and the formation of a functional dimer. Study of these structures also uncovers previously unknown features, such as the presence of strategic salt bridges that explain why transporters are stabilized in specific conformations. The cryo-EM structures show similarities with other transport protein structures, especially regarding the position of the cations. The structures also pose challenging questions regarding the number of ions bound and the strict electroneutrality that is conventional understanding.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"87 1","pages":"397-419"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"At the Crossroads of Health and Disease: Consequences of Fat in the Liver.","authors":"Matthew Dukewich, Liyun Yuan, Norah A Terrault","doi":"10.1146/annurev-physiol-022724-105515","DOIUrl":"10.1146/annurev-physiol-022724-105515","url":null,"abstract":"<p><p>The liver plays a central role in regulating lipid and glucose metabolism, particularly in transitioning between energy storage and provision in fed and fasting states. Loss of metabolic flexibility, characterized by the impaired capacity to shift between different energy substrates, sets the stage for accumulation of hepatic triglyceride as lipid droplets and further metabolic perturbations. Cross talk between the liver and other organs, including adipose tissue, pancreas, and muscle, is relevant in this transition. In addition to the metabolic consequences of steatosis, there are significant liver risks related to triggered inflammatory and fibrotic processes. Steatotic liver diseases affect an estimated one in three adults globally and contribute to substantial morbidity and mortality. This review focuses on the liver's role in lipid metabolism, defining metabolic health and unhealth, the pathogenic underpinnings that lead to steatohepatitis and hepatic fibrosis, and the clinical features and therapies for the most common forms of steatotic liver diseases.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"87 1","pages":"325-352"},"PeriodicalIF":19.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-022724-105144
Stathis Megas, Anna Wilbrey-Clark, Aidan Maartens, Sarah A Teichmann, Kerstin B Meyer
{"title":"Spatial Transcriptomics of the Respiratory System.","authors":"Stathis Megas, Anna Wilbrey-Clark, Aidan Maartens, Sarah A Teichmann, Kerstin B Meyer","doi":"10.1146/annurev-physiol-022724-105144","DOIUrl":"10.1146/annurev-physiol-022724-105144","url":null,"abstract":"<p><p>Over the last decade, single-cell genomics has revealed remarkable heterogeneity and plasticity of cell types in the lungs and airways. The challenge now is to understand how these cell types interact in three-dimensional space to perform lung functions, facilitating airflow and gas exchange while simultaneously providing barrier function to avoid infection. An explosion in novel spatially resolved gene expression technologies, coupled with computational tools that harness machine learning and deep learning, now promise to address this challenge. Here, we review the most commonly used spatial analysis workflows, highlighting their advantages and limitations, and outline recent developments in machine learning and artificial intelligence that will augment how we interpret spatial data. Together these technologies have the potential to transform our understanding of the respiratory system in health and disease, and we showcase studies in lung development, COVID-19, lung cancer, and fibrosis where spatially resolved transcriptomics is already providing novel insights.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"447-470"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1146/annurev-physiol-020924-033209
Charles N Serhan, Bruce D Levy
{"title":"Proresolving Lipid Mediators in the Respiratory System.","authors":"Charles N Serhan, Bruce D Levy","doi":"10.1146/annurev-physiol-020924-033209","DOIUrl":"10.1146/annurev-physiol-020924-033209","url":null,"abstract":"<p><p>Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"491-512"},"PeriodicalIF":15.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}