Store-Operated Calcium Channels in the Nervous System.

IF 15.7 1区 医学 Q1 PHYSIOLOGY
Kirill S Korshunov, Murali Prakriya
{"title":"Store-Operated Calcium Channels in the Nervous System.","authors":"Kirill S Korshunov, Murali Prakriya","doi":"10.1146/annurev-physiol-022724-105330","DOIUrl":null,"url":null,"abstract":"<p><p>Store-operated Ca2+ entry (SOCE) is a widespread mechanism of cellular Ca2+ signaling that arises from Ca2+ influx across the plasma membrane through the Orai family of calcium channels in response to depletion of intracellular Ca2+ stores. Orai channels are a crucial Ca2+ entry mechanism in both neurons and glia and are activated by a unique inside-out gating process involving interactions with the endoplasmic reticulum Ca2+ sensors, STIM1 and STIM2. Recent evidence indicates that SOCE is broadly found across all areas of the nervous system where its physiology and pathophysiology is only now beginning to be understood. Here, we review the growing literature on the mechanisms of SOCE in the nervous system and contributions to gene expression, neuronal excitability, synaptic plasticity, and behavior. We also explore the burgeoning links between SOCE and neurological disease and discuss therapeutic implications of targeting SOCE for brain disorders.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-022724-105330","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Store-operated Ca2+ entry (SOCE) is a widespread mechanism of cellular Ca2+ signaling that arises from Ca2+ influx across the plasma membrane through the Orai family of calcium channels in response to depletion of intracellular Ca2+ stores. Orai channels are a crucial Ca2+ entry mechanism in both neurons and glia and are activated by a unique inside-out gating process involving interactions with the endoplasmic reticulum Ca2+ sensors, STIM1 and STIM2. Recent evidence indicates that SOCE is broadly found across all areas of the nervous system where its physiology and pathophysiology is only now beginning to be understood. Here, we review the growing literature on the mechanisms of SOCE in the nervous system and contributions to gene expression, neuronal excitability, synaptic plasticity, and behavior. We also explore the burgeoning links between SOCE and neurological disease and discuss therapeutic implications of targeting SOCE for brain disorders.

神经系统中的储能钙通道
储存操作的 Ca2+ 进入(SOCE)是一种广泛的细胞 Ca2+ 信号转导机制,它是在细胞内 Ca2+ 储存耗竭时,Ca2+ 通过 Orai 系列钙通道流入质膜而产生的。Orai 通道是神经元和神经胶质细胞中一种重要的 Ca2+ 进入机制,通过独特的由内向外的门控过程激活,其中涉及与内质网 Ca2+ 传感器 STIM1 和 STIM2 的相互作用。最近的证据表明,SOCE 广泛存在于神经系统的各个领域,其生理和病理生理学现在才刚刚开始被人们了解。在此,我们回顾了有关神经系统中 SOCE 的机制以及其对基因表达、神经元兴奋性、突触可塑性和行为的贡献的不断增长的文献。我们还探讨了 SOCE 与神经系统疾病之间的新兴联系,并讨论了以 SOCE 为靶点治疗脑部疾病的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信