{"title":"In situ analysis of chemical changes of thermally compressed wood by 2D NMR","authors":"Lili Li, Xiaofei Shan, Yali Shao, Jianfang Yu, Wenwen Liu, Zhiying Luo, Ximing Wang","doi":"10.1007/s00226-025-01632-y","DOIUrl":"10.1007/s00226-025-01632-y","url":null,"abstract":"<div><p>Scots pine was subjected to radial compression at 160 °C and heat treatment at 180–220 °C using hot pressing to produce compressed wood and thermally compressed wood (heartwood and sapwood). Then, the macromolecular structure changes of modified wood without destruction were analyzed using high-resolution 2D HSQC NMR. After heat treatment, the contour signals in NMR spectra evidently reduced. Its reduction mainly came from side-chain cleavage of <i>O</i>-acetylated galactoglucomannans (GGMs) and 4-<i>O</i>-methyl-gluconoxylans (MGXs) in hemicellulose. Moreover, the thermal stability of GGMs was lower than that of MGXs. Specifically, the thermal stability order of monosaccharides in heartwood and sapwood should be as follows: glucose > xylose > mannose > 2-<i>O</i>- and 3-<i>O</i>-Ac- Man<i>p</i> > galactose > 4-<i>O</i>-methyl-α-D-glucuronic acid ≥ arabinose. At 220 °C, hemicellulose only left minor xylan and mannan. Conversely, the change of cellulose structure was not obvious. NMR spectra indicated high temperature caused the breaking of β-O-4, β-5, and α-O-4 bonds, leading to the mass loss of lignin.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luoyi Yan, Elisa Julien, Benjamin Maillet, Rahima Sidi-Boulenouar, Philippe Coussot
{"title":"Water penetration in the microstructure of hardwood revealed by NMR relaxometry","authors":"Luoyi Yan, Elisa Julien, Benjamin Maillet, Rahima Sidi-Boulenouar, Philippe Coussot","doi":"10.1007/s00226-025-01633-x","DOIUrl":"10.1007/s00226-025-01633-x","url":null,"abstract":"<div><p>The imbibition of water in the microstructure of cubic hardwood (oak and poplar) samples was followed by NMR, with sample faces either open to air or coated with paint, and along the different wood directions. Dynamic NMR relaxometry allows to clearly distinguish and quantify the amount of water appearing in fibers, in vessels, or as bound water, over time. It appears that the water penetrates first in the form of bound water in the wood sample. Subsequently, fibers are infiltrated at a slower rate, followed by vessels, which exhibit the slowest rate of invasion. For poplar, vessels even start to be invaded only after all the fibers have been filled. Furthermore, the invasion dynamics of the different phases are qualitatively similar when all open faces of the wood sample are coated with paint, preventing any air extraction by these faces. A simple capillary imbibition model fails to fully describe these processes, indicating that the wetting properties vary depending on the presence of bound water in the cell walls, and subsequently, on the presence of water in fibers. Finally, given that bound water penetrates prior to free water, the diffusion coefficient of bound water can be estimated from the data across different directions (L, R, T), which enables the characterization of moisture exchange between construction materials and ambient air under hygroscopic conditions.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical properties of Virginia creeper tendrils","authors":"Yueqi Jiang, Qixuan Zeng, Jiantong Sun, Jici Jiang, Lan Cheng, Hongping Zhao","doi":"10.1007/s00226-024-01626-2","DOIUrl":"10.1007/s00226-024-01626-2","url":null,"abstract":"<div><p>The tendrils of Virginia creepers serve a crucial mechanical function in its attachment system, which may be subjected to environmental forces. In this study, a comprehensive experimental analysis of tensile tests was initially conducted on Virginia creeper straight tendrils, revealing their ability to deform with an elongation of approximately 50%. The investigation encompassed the tendrils of seasonal and locational variations, the moisture content, and the alterative weight ratio of the tendril core (peeled skin of the tendril) to the overall tendril. The findings indicated that the mechanical properties of the tendrils were significantly impacted by both moisture content and growth. The tendril microstructure was then examined by scanning electron microscopy (SEM), which revealed that a substantial presence of G-fibers with characteristic gelatinous helix and helical structures may play a significant role in the remarkable tendril elongation. The study may improve our understanding of the functional and structural aspects of climbers and their tendrils, and contribute to the development of new high-strength composite materials from plant fibers.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyu Yang, Shanyang Wei, Xinli Zhao, Xingjia Liu
{"title":"Effect of APP-TA-silica sol compound flame retardant on fire resistance of Chinese fir and the fire spread numerical simulation in buildings","authors":"Hongyu Yang, Shanyang Wei, Xinli Zhao, Xingjia Liu","doi":"10.1007/s00226-025-01634-w","DOIUrl":"10.1007/s00226-025-01634-w","url":null,"abstract":"<div><p>To develop a novel flame retardant that enhances the fire resistance of wood, a compound consisting of ammonium polyphosphate, tannic acid, and silica sol was integrated into Chinese fir. This study examined its effects on fire resistance and analyzed the dynamics of flame spread in flame-retardant wood using numerical simulations of the Fire Dynamics Simulator. The optimal flame retardant combinations, identified through orthogonal testing, were F-STA1 (Flame retardant silica sol: tannic acid: ammonium polyphosphate ratio of 2:1:1) and F-STA2 (Flame retardant silica sol: tannic acid: ammonium polyphosphate ratio of 3:1:2). Their corresponding limited oxygen index values were 34.2% and 33.6%, respectively, achieving a flame retardant classification of B1 level and a UL-94 rating of V-0. Thermogravimetric analysis revealed that the peak weight loss rates for F-STA1 and F-STA2 were substantially lower than those for the F-Ctrl (Control group), with increases in carbon residue rates of 83.33%, 114.22%, and 68.22%, at 800 °C for F-STA1, F-STA2, and F-TA (The flame retardant has no silica sol, and the tannic acid: ammonium polyphosphate ratio is 1:2), respectively. Cone calorimetric analysis indicated significant reductions in HRR (Heat Release Rate) and THR (Total Heat Release) for F-STA2, with decreases of 41.86% and 38.41% compared to the control. Raman spectroscopy demonstrated a reduction in the residual carbon ID/IG ratio by 34.63% for F-STA2. Furthermore, the addition of silica sol notably enhanced the mechanical properties of the wood; bending strength and modulus for F-STA2 improved by 55.47% and 45.33%, respectively, and compressive strength increased by 10.69%. Simulation outcomes suggest that flame retardant application reduces flame spread, smoke propagation, and the rate of temperature change in wood structure buildings, effectively inhibiting fire progression.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Opazo-Vega, Alan Jara-Cisterna, Franco Benedetti, Mario Nuñez-Decap
{"title":"Estimation of the orthotropic elastic properties of reinforced LVL panels through vibration-based model updating techniques","authors":"Alexander Opazo-Vega, Alan Jara-Cisterna, Franco Benedetti, Mario Nuñez-Decap","doi":"10.1007/s00226-024-01627-1","DOIUrl":"10.1007/s00226-024-01627-1","url":null,"abstract":"<div><p>Laminated veneer lumber panels (LVL) are engineered wood products suitable for application in construction contexts. However, LVL panels have some deficient elastic properties (e.g., <span>({E}_{22})</span>) concerning other elastic properties (e.g., <span>({E}_{11})</span> and <span>({G}_{12})</span>), which may cause problems in structural applications. Carbon and basalt fibers (CF and BF) are reinforcement alternatives for LVL panels, as they can be included in the interior or exterior wood veneer bonding process. This work aims to analyze the effect of incorporating CF and BF fibers in the orthotropic elastic properties of radiata pine LVL panels through a nondestructive method based on transverse vibration tests and model updating techniques. Accordingly, 20 LVL panels of 15 mm thickness were fabricated and tested with different reinforcing fibers and adhesives. Then, some relevant panels’ dynamic properties were identified through experimental modal analysis. Finally, three relevant panels’ orthotropic elastic properties were estimated simultaneously using finite-element model updating techniques and Python-based deterministic calibration scripts. The results suggest that the reinforced LVL panels obtained significant increases in their orthotropic elastic properties, in the order of 22%, 333%, and 27% for <span>({E}_{11})</span>, <span>({E}_{22})</span>, and <span>({G}_{12})</span>, respectively. These results show the effectiveness of the type of reinforcement applied and the potential application of the nondestructive evaluation method in other contexts.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian Brandstätter, Magdalena Senoner, Markus Lukacevic, Maximilian Autengruber, Michael Truskaller, Gerhard Grüll, Josef Füssl
{"title":"Investigation of cyclic water infiltration and dry-out in coated spruce using finite-element simulations","authors":"Florian Brandstätter, Magdalena Senoner, Markus Lukacevic, Maximilian Autengruber, Michael Truskaller, Gerhard Grüll, Josef Füssl","doi":"10.1007/s00226-025-01629-7","DOIUrl":"10.1007/s00226-025-01629-7","url":null,"abstract":"<div><p>Accurate prediction of moisture distributions in wood is among the most critical challenges in timber engineering. Achieving this requires a well-coordinated comparison of experimental methods and simulation tools. While significant progress has been made in developing simulation tools in recent years, a lack of experience with and trust in these tools continues to hinder broader implementation, especially when it comes to free water and its absorption. Investigations and model advancements have allowed for the simulation of increasingly complex cases, including one-dimensional moisture transport above the fiber saturation point (FSP) in coated boards and below FSP in coated glued laminated timber (GLT). However, free water flow in coated GLT beams has not yet been addressed, which can become problematic in case of extreme scenarios, such as water infiltration. In this study, we demonstrate that the multi-Fickian free water transport model developed by some of the authors can successfully simulate three-dimensional coated cases. Uncoated and coated boards and GLT members were subjected to cyclic wetting and drying, both experimentally and numerically. To simplify the calibration process of the mass transfer coefficient of free water—identified as the most significant parameter for the simulation of free water transport—experiments previously conducted by some of the authors were simulated. Based on the simulation results, approaches for an initial estimation of the mass transfer coefficient were developed. If the water uptake of coated specimens is measured three days after continuous soaking in water and the result exceeds a specific limit, the coefficient can be sufficiently predicted. The simulation and experimental results show a good agreement.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuli Wang, Wolfgang Gard, Yasmine Mosleh, Jan-Willem van de Kuilen
{"title":"Morphological analysis of inosculated connections in weeping figs: insights on density, geometry, fiber structures, and compositional variations","authors":"Xiuli Wang, Wolfgang Gard, Yasmine Mosleh, Jan-Willem van de Kuilen","doi":"10.1007/s00226-024-01622-6","DOIUrl":"10.1007/s00226-024-01622-6","url":null,"abstract":"<div><p>Trees exhibit adaptability in response to external loads, which allows them to form an inosculated connection (self-growing connection) with a neighboring tree. Such connections have the mechanical potential to build living tree structures. Although qualitative studies have studied this phenomenon, quantitative analysis of its growth features remains limited. Self-growing connections fused by weeping figs (<i>Ficus benjamina</i> L.) are utilized to study growth features. X-ray scanning and optical microscopy techniques are employed to investigate parameters including density, geometry, fiber structures, and material compositions. Key findings demonstrate that the fused region of a connection has a larger volume and a higher density on the intersected surface. Microscopic analysis identifies that the enlarged wood in the fused area is tension wood characterized by G-layers. The key component that connects trees is referred to as merged fibers, and the pattern of their distribution is found to be mainly in the outer layer of the larger cross-angle of a connection. At the cellular level, crystals within cells are identified in the fused region, implying possible mechanical stresses the interface has experienced. The findings in self-growing connections can serve as inspiration for structural design in living structures, biomimicry, bioinspired structures, and advancements in bioeconomics.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01622-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mostafa Abdelrahman, Ani Khaloian-Sarnaghi, Jan-Willem van de Kuilen
{"title":"Fire performance of wood–steel hybrid elements: finite element analysis and experimental validation","authors":"Mostafa Abdelrahman, Ani Khaloian-Sarnaghi, Jan-Willem van de Kuilen","doi":"10.1007/s00226-024-01628-0","DOIUrl":"10.1007/s00226-024-01628-0","url":null,"abstract":"<div><p>Wood-steel hybrid (WSH) elements are gaining popularity in the construction industry due to their reduced environmental impact and high load capacity. However, fire resistance remains a crucial challenge for advancing wood as a construction material. The proposed WSH slab consists of a trapezoidal steel profile sandwiched between two laminated veneer lumber (LVL) beech panels. This research aims to numerically predict the fire performance of the proposed WSH slab element by generating heat transfer models that consider convection, radiation, and conduction. The objectives are to predict the temperature profile of the system's components, assess the charring rate of the LVL panels, and validate the results with experimental fire tests. Computed Tomography (CT) scanning was additionally used to detect the material density variation in the remaining LVL layers after fire tests. Simulations reveal that the size and shape of the internal cavity significantly influence heat flow within the system. Analysis of different thicknesses and heights of the steel sheet shows a substantial impact on the charring initiation time of the upper LVL layer. Temperature profiles of the components from numerical analysis exhibit similar behavior to that observed in the experiments. The experimental charring rate averages between 0.88—1.00 mm/min, while the numerical rate averages between 0.95—1.06 mm/min, with a 5–8% average deviation attributed to conduction interaction between LVL and the steel sheet. This variation may also be caused by the definition of generic thermal properties of wood according to EN1995-1-2, which may not accurately represent the behavior of the LVL element under fire.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01628-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antoine Stéphan, Patrick Perré, Clément L’Hostis, Romain Rémond
{"title":"The fork device: a test for estimating the memory creep of wood under load during moisture variation","authors":"Antoine Stéphan, Patrick Perré, Clément L’Hostis, Romain Rémond","doi":"10.1007/s00226-024-01606-6","DOIUrl":"10.1007/s00226-024-01606-6","url":null,"abstract":"<div><p>When a loaded piece of wood is exposed to variable climatic conditions, the stress state depends on both the stress and moisture content change history due to the memory creep. To explore this complex time-dependent interaction, a new experimental device has been developed. Called the \"fork\" device, this simple setup allows the evolution of the memory creep of twin wood samples to be determined continuously under different loads. In this work, this device has been used at low temperature (i.e. 30 <span>(^{circ })</span>C) and with six different humidity cycles to focus on the mechanosorptive part of the memory creep. The test was performed with thin quartersawn and flatsawn samples of beech and oak originally at green state. periods were chosen to obtain a moisture content quickly close to the equilibrium moisture content for each plateau. With negligible moisture gradient, the dynamics of mechanosorption was measured and compared with moisture variations, species and load direction. The results highlight an increase in mechanosorptive strain with cumulative moisture content variations with an asymptotic behavior towards a limit. For oak and beech, a common compliance can be found for each grain direction.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie Hartwig-Nair, Alexandr Nasedkin, Klara Hackenstrass, Emiliano De Santis, Sara Florisson, Malin Wohlert
{"title":"Lignin hygroexpansion in compression and opposite wood - a molecular dynamics study","authors":"Marie Hartwig-Nair, Alexandr Nasedkin, Klara Hackenstrass, Emiliano De Santis, Sara Florisson, Malin Wohlert","doi":"10.1007/s00226-024-01624-4","DOIUrl":"10.1007/s00226-024-01624-4","url":null,"abstract":"<div><p>Softwood branches develop compression wood (CW) in the lower parts of the branch, while opposite wood (OW) develops on the upper. These wood types differ in structure at several length scales, among others in the chemical composition of their lignin matrix. While OW mostly contains guaiacyl (G) units, CW is known to contain a substantial fraction of 4-hydroxyphenyl (H) lignin. In this study, the impact this difference has on lignin hygroexpansion and interaction with water is studied by the means of atomistic models and molecular dynamics computer simulations of lignin systems at different levels of hydration. It was found that, despite the minor difference in chemical composition, there are differences in swelling, structure and water dynamics. CW lignin is found to have a higher uniaxial swelling coefficient, since the phase separation between lignin and water is more pronounced. This behavior is linked to structural differences, where intermolecular <span>({pi -pi })</span> stacking is more common in CW lignin and hydrogen bonding to water more pronounced in OW lignin. These findings are of interest for understanding the role of lignin in CW, and general understanding of moisture interaction with lignin inside wood cell walls.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01624-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}