Zheyu Li, Wenjing Liu, Zhihong Zhao, Ziyang Zhang, Rui Tan, Bin Wang, Zihang Qiao, Long Zhou, Yanhao Wang, Minghui Zhang
{"title":"氯化锂改性木材吸水性能及其在集水中的应用","authors":"Zheyu Li, Wenjing Liu, Zhihong Zhao, Ziyang Zhang, Rui Tan, Bin Wang, Zihang Qiao, Long Zhou, Yanhao Wang, Minghui Zhang","doi":"10.1007/s00226-025-01678-y","DOIUrl":null,"url":null,"abstract":"<div><p>As global water scarcity escalates into a pressing environmental challenge, advancing atmospheric water harvesting (AWH) technologies becomes imperative. This study presents a solar-driven wood-based AWH system using an innovative hygroscopic composite material, DW@LiCl. Through selective lignin removal, natural wood is transformed into delignified wood (DW) featuring a three-dimensional microporous architecture and enhanced surface area. Subsequent infusion with lithium chloride (LiCl) creates a biohybrid material that synergizes sustainable biomass properties with high-performance salt hygroscopicity. The composite demonstrates dual-phase functionality: rapid moisture capture (2.06% gravimetric uptake in 10 h at 90% RH during nocturnal adsorption) and efficient solar-triggered water release (75% desorption within 30 min under 1 00000 lx irradiation). Cyclic stability tests reveal exceptional reusability, with the material retaining 92% of its initial water uptake capacity after 10 adsorption-desorption cycles. Distinct from conventional AWH designs, DW@LiCl innovatively bridges ecological sustainability with engineering efficiency, leveraging wood’s inherent capillary transport and LiCl’s deliquescent behavior while circumventing energy-intensive regeneration processes. This biomass-based approach establishes a scalable framework for decentralized water production, particularly, offering a sustainable alternative to synthetic polymer-based systems.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water uptake properties of lithium chloride modified wood and its application in water collection\",\"authors\":\"Zheyu Li, Wenjing Liu, Zhihong Zhao, Ziyang Zhang, Rui Tan, Bin Wang, Zihang Qiao, Long Zhou, Yanhao Wang, Minghui Zhang\",\"doi\":\"10.1007/s00226-025-01678-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As global water scarcity escalates into a pressing environmental challenge, advancing atmospheric water harvesting (AWH) technologies becomes imperative. This study presents a solar-driven wood-based AWH system using an innovative hygroscopic composite material, DW@LiCl. Through selective lignin removal, natural wood is transformed into delignified wood (DW) featuring a three-dimensional microporous architecture and enhanced surface area. Subsequent infusion with lithium chloride (LiCl) creates a biohybrid material that synergizes sustainable biomass properties with high-performance salt hygroscopicity. The composite demonstrates dual-phase functionality: rapid moisture capture (2.06% gravimetric uptake in 10 h at 90% RH during nocturnal adsorption) and efficient solar-triggered water release (75% desorption within 30 min under 1 00000 lx irradiation). Cyclic stability tests reveal exceptional reusability, with the material retaining 92% of its initial water uptake capacity after 10 adsorption-desorption cycles. Distinct from conventional AWH designs, DW@LiCl innovatively bridges ecological sustainability with engineering efficiency, leveraging wood’s inherent capillary transport and LiCl’s deliquescent behavior while circumventing energy-intensive regeneration processes. This biomass-based approach establishes a scalable framework for decentralized water production, particularly, offering a sustainable alternative to synthetic polymer-based systems.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"59 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-025-01678-y\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01678-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Water uptake properties of lithium chloride modified wood and its application in water collection
As global water scarcity escalates into a pressing environmental challenge, advancing atmospheric water harvesting (AWH) technologies becomes imperative. This study presents a solar-driven wood-based AWH system using an innovative hygroscopic composite material, DW@LiCl. Through selective lignin removal, natural wood is transformed into delignified wood (DW) featuring a three-dimensional microporous architecture and enhanced surface area. Subsequent infusion with lithium chloride (LiCl) creates a biohybrid material that synergizes sustainable biomass properties with high-performance salt hygroscopicity. The composite demonstrates dual-phase functionality: rapid moisture capture (2.06% gravimetric uptake in 10 h at 90% RH during nocturnal adsorption) and efficient solar-triggered water release (75% desorption within 30 min under 1 00000 lx irradiation). Cyclic stability tests reveal exceptional reusability, with the material retaining 92% of its initial water uptake capacity after 10 adsorption-desorption cycles. Distinct from conventional AWH designs, DW@LiCl innovatively bridges ecological sustainability with engineering efficiency, leveraging wood’s inherent capillary transport and LiCl’s deliquescent behavior while circumventing energy-intensive regeneration processes. This biomass-based approach establishes a scalable framework for decentralized water production, particularly, offering a sustainable alternative to synthetic polymer-based systems.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.