J. Schubnell, M. Burdack, N. Hiltscher, P. Weidner, T. Ummenhofer, M. Farajian
{"title":"Fatigue performance of repair-welded and HFMI-treated transverse stiffeners","authors":"J. Schubnell, M. Burdack, N. Hiltscher, P. Weidner, T. Ummenhofer, M. Farajian","doi":"10.1007/s40194-024-01859-6","DOIUrl":"10.1007/s40194-024-01859-6","url":null,"abstract":"<div><p>Large portions of infrastructure buildings, for example, highway and railway bridges, are steel constructions and reach the end of their service life due to an increase of traffic volume. Repair welding can restore the current welded constructional detail with a similar fatigue strength. However, due to the increase of fatigue loading (traffic), an increase of fatigue strength is needed in such bridge structures. For this reason, the combination of repair welding and high-frequency mechanical impact (HFMI) treatment was investigated in this study in order to quantify the increase of fatigue life by combining both methods. For this, transverse stiffeners made of steel grade S355J2 + N were subjected to fatigue loading until a pre-determined crack depth was reached. The cracks were detected by non-destructive testing methods. Weld repair was realized by removing the material containing the crack and re-welded by a gas metal arc welding (GMAW) process, following that post weld treated was applied by HFMI-treatment and the specimens were subjected to fatigue loading again. Hardness profiles, weld geometries, and residual stress states were investigated for both the original and the repaired condition. In the repaired condition without additional HFMI treatment, a similar fatigue life than in the original condition is observed for the specimens. The repair-welded and HFMI-treated specimens reach a significant higher fatigue life compared to the repaired ones in the as-welded condition.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 1","pages":"199 - 211"},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01859-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharath P. Subadra, Eduard Mayer, Philipp Wachtel, Shahram Sheikhi
{"title":"Feasibility study on machine learning methods for prediction of process-related parameters during WAAM process using SS-316L filler material","authors":"Sharath P. Subadra, Eduard Mayer, Philipp Wachtel, Shahram Sheikhi","doi":"10.1007/s40194-024-01855-w","DOIUrl":"10.1007/s40194-024-01855-w","url":null,"abstract":"<div><p>The geometry of objects by means of wire arc additive manufacturing technology (WAAM) is a function of the quality of the deposited layers. The process parameters variation and heat flow affect the geometric precision of the parts, when compared to the actual dimensions. Therefore, in situ geometry monitoring which is integrated in such a way to enable a backward control model is essential in the WAAM process. In this article, an attempt is made to study the effect of four input variables, namely voltage (U), welding current (I), travel speed and wire feed rate on the output function in the form of two geometrical characteristics of a single weld bead. These output functions which are determinant of the weld quality are width of weld bead (BW) and height of weld bead (BH). A machine learning approach is utilised to predict the bead dimensions based on the input parameters and to predict the parameters by assigning suitable scores. For predicting the bead dimensions, two models, namely linear regression and random forest, shall be utilised, whereas for the purpose of classification based on weld parameters, k-nearest neighbours model shall be employed. Through this work, a wide dataset of parameters in the form of input variable and output in the form bead dimensions are generated for 316LSi filler material which shall be used as a training data for a machine learning algorithm. Subsequently, the predicted parameters shall be cross-checked with actual parameters.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3205 - 3214"},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01855-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Publisher Correction: Novel approach for in-line process monitoring during ultrasonic metal welding of dissimilar wire/terminal joints based on the thermoelectric effect","authors":"Andreas Gester, Toni Sprigode, Guntram Wagner","doi":"10.1007/s40194-024-01860-z","DOIUrl":"10.1007/s40194-024-01860-z","url":null,"abstract":"","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3235 - 3236"},"PeriodicalIF":2.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01860-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Marumoto, Y. Sato, A. Fujinaga, T. Takahashi, H. Yamamoto, M. Yamamoto
{"title":"Development of automation and monitoring methods for narrow-gap hot-wire laser welding using camera images","authors":"K. Marumoto, Y. Sato, A. Fujinaga, T. Takahashi, H. Yamamoto, M. Yamamoto","doi":"10.1007/s40194-024-01849-8","DOIUrl":"10.1007/s40194-024-01849-8","url":null,"abstract":"<div><p>In this study, an image-based method was developed for hot-wire laser narrow gap welding. The welding process was monitored based on image information processed using semantic segmentation, a method of classifying images by pixel. To control the welding position, an experimental system was configured that automatically follows the welding position by recognizing the position of the welding groove from the image during welding. In monitoring weld defects, a method was developed to predict the lack of fusion occurring on the wall surface using brightness information near the wall surface. For the lack of fusion occurring at the bottom of the groove, a defect detection method was developed by monitoring the molten pool shape using semantic segmentation. Defects were generated by intentionally reducing the laser power, and the defects were monitored from images taken during processing. In the unstable state where the laser power was reduced, the shape in front of the molten pool became unstable, and the occurrence of defects was monitored by capturing the shape change. In conclusion, this research made it possible to control and monitor the welding process with a single camera.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 1","pages":"269 - 280"},"PeriodicalIF":2.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01849-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Manikandan, K. Jalaja, S. Anoop, G. Sudarshan Rao, Sushant K. Manwatkar, Anil Kumar Jain, A. Venugopal, Rohit Kumar Gupta, Jacob Philip, P. Ramesh Narayanan, Govind Bajargan
{"title":"Studies on multiple weld repairs of M250 maraging steel for solid motor casing used in satellite launch vehicle application","authors":"P. Manikandan, K. Jalaja, S. Anoop, G. Sudarshan Rao, Sushant K. Manwatkar, Anil Kumar Jain, A. Venugopal, Rohit Kumar Gupta, Jacob Philip, P. Ramesh Narayanan, Govind Bajargan","doi":"10.1007/s40194-024-01858-7","DOIUrl":"10.1007/s40194-024-01858-7","url":null,"abstract":"<div><p>Maraging steel (M250) is extensively used in aerospace industries for the fabrication of solid propellant tanks in the welded and repair welded condition. The purpose of the investigation is to study the effect of multiple weld repairs on the microstructure and mechanical behavior of the alloy. The microstructure of the alloy in the as-welded condition contains two distinct heat-affected zones (HAZ) with different contents of reverted austenite. The results indicate that increased weld repair reduced the weld strength from 1722 to 1405 MPa whereas elongation increased from 5.8 to 6.1%. Fracture toughness was found to increase from 79 to 87.2 MPa√m. This is due to the increased content of reverted austenite of HAZ, which is a result of heat experienced by the zone during welding. The location of failure was predominantly along the HAZ 2 which is the mechanically weaker zone of the weld joint as revealed by microhardness measurements. Further, minor improvement in corrosion resistance is found due to increased content of austenite in HAZ in repair weld conditions.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 1","pages":"1 - 14"},"PeriodicalIF":2.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julius Raute, Alexander Beret, Max Biegler, Michael Rethmeier
{"title":"Life cycle assessment in additive manufacturing of copper alloys—comparison between laser and electron beam","authors":"Julius Raute, Alexander Beret, Max Biegler, Michael Rethmeier","doi":"10.1007/s40194-024-01856-9","DOIUrl":"10.1007/s40194-024-01856-9","url":null,"abstract":"<div><p>Additive manufacturing is becoming increasingly important for industrial production. In this context, directed energy deposition processes are in demand to achieve high deposition rates. In addition to the well-known laser-based processes, the electron beam has also reached industrial market maturity. The wire electron beam additive manufacturing offers advantages in the processing of copper materials, for example. In the literature, the higher energy efficiency and the resulting improvement in the carbon footprint of the electron beam are highlighted. However, there is a lack of practical studies with measurement data to quantify the potential of the technology. In this work, a comparative life cycle assessment between wire electron beam additive manufacturing (DED-EB) and laser powder additive manufacturing (DED-LB) is carried out. This involves determining the resources for manufacturing, producing a test component using both processes, and measuring the entire energy consumption. The environmental impact is then estimated using the factors global warming potential (GWP100), photochemical ozone creation potential (POCP), acidification potential (AP), and eutrophication potential (EP). It can be seen that wire electron beam additive manufacturing is characterized by a significantly lower energy requirement. In addition, the use of wire ensures greater resource efficiency, which leads to overall better life cycle assessment results.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3169 - 3176"},"PeriodicalIF":2.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01856-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel approach for in-line process monitoring during ultrasonic metal welding of dissimilar wire/terminal joints based on the thermoelectric effect","authors":"Andreas Gester, Toni Sprigode, Guntram Wagner","doi":"10.1007/s40194-024-01853-y","DOIUrl":"10.1007/s40194-024-01853-y","url":null,"abstract":"<div><p>Ultrasonic metal welding (USMW) is a manufacturing technique widely employed in the automotive and aerospace industries due to its efficiency in joining similar as well as dissimilar metals. Despite its prevalence, the lack of effective in-line process monitoring methods has resulted in high scrap rates, product recalls due to unrecognized scrap or financial losses due to pseudo-scrap, limiting its application in more sensitive industries. This paper presents a novel thermoelectric effect-based method for in-line process monitoring of USMW processes. This approach utilizes the thermoelectric properties, that manifest at the junctions of dissimilar metals during welding to accurately measure the temperature of the weld zone without the need of additional thermocouples, pyrometers or infrared cameras. An experimental setup was developed to validate the thermoelectric-based temperature measurement methodology. Key to this approach is the detection of thermoelectric voltage developed due to thermo diffusion when dissimilar materials are joined. The experiments showed a strong correlation between the thermoelectric voltage and the mechanical strength of the welds, suggesting that this parameter can effectively predict the quality of the weld. In the trials, a series of welded samples was created under controlled conditions to measure the generated thermoelectric voltage and correlate it with ultimate tensile strength tests. The data were analyzed using Spearman’s correlation coefficients to determine the correlation of the thermoelectric signals and joint strength. Results indicate that the thermoelectric voltage measurements correlate highly with the joint strength, with a Spearman’s correlation coefficient of over 0.94, thereby providing a promising predictive metric for assessing weld quality.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 2","pages":"363 - 372"},"PeriodicalIF":2.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01853-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pradeep D. G., Nithin H. S., Sharath B. N., Madhu K. S.
{"title":"Effect of microwave hybrid heating on high temperature dry sliding wear behavior of Al2O3 reinforced WC–Co HVOF coating","authors":"Pradeep D. G., Nithin H. S., Sharath B. N., Madhu K. S.","doi":"10.1007/s40194-024-01852-z","DOIUrl":"10.1007/s40194-024-01852-z","url":null,"abstract":"<div><p>Based on the application, wear is one of the most typical failure mechanisms, and this problem can be alleviated with some modifications. Oxide-based alloys are robust, wear-resistant, and erosion/corrosion-resistant. Thermal spray is considered to be one of the most effective methods for altering the outer layer of a base metal, as it safeguards against a variety of degradations and retains its properties despite exposure to high temperatures and severe working conditions. The thermal spray method often encounters issues like porosity and cavities, unmelted or partially melted particles, and residual stress, which result in limited surface resistance qualities. One of the most effective post-treatment methods that could be utilized to address these issues is microwave treatment. The coating powder WC12Co + Al<sub>2</sub>O<sub>3</sub> were sprayed over the steel substrate using the high-velocity-oxy-fuel (HVOF) process trailed by microwave treatment. In addition to a heterogeneous microstructure characterized by fissures and cavities, the as-deposited coatings exhibited inadequate adhesion between splats. Microwave treatment enhances the erosion and friction resistance of coatings by promoting the formation of intermetallic phases and ensuring a uniform microstructure. The microwave-treated coating exhibits reduced breadth and more refined wear scarring due to the fatigue-spalling action. In contrast, coatings treated with microwaves have a more uniform structure, resulting in reduced surface roughness and porous. In contrast to the as-deposited coating, the mechanical and tribological properties of the WC12Co + Al<sub>2</sub>O<sub>3</sub> coating were enhanced when subjected to microwave treatment. </p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 4","pages":"915 - 927"},"PeriodicalIF":2.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noah E. El-Zathry, Stephen Akinlabi, Wai Lok Woo, Vivek Patel, Rasheedat M. Mahamood
{"title":"Friction Stir-Based Techniques: An Overview","authors":"Noah E. El-Zathry, Stephen Akinlabi, Wai Lok Woo, Vivek Patel, Rasheedat M. Mahamood","doi":"10.1007/s40194-024-01847-w","DOIUrl":"10.1007/s40194-024-01847-w","url":null,"abstract":"<div><p>Friction stir-based techniques (FSTs), originating from friction stir welding (FSW), represent a solid-state processing method catering to the demands of various industrial sectors for lightweight components with exceptional properties. These techniques have gained much more attraction by providing an opportunity to tailor the microstructure and enhance the performance and quality of produced welds and surfaces. While significant attention has historically been directed towards the FSW process, this review delves into the working principles of FSTs, exploring their influence on mechanical properties and microstructural characteristics of various materials. Additionally, emphasis is placed on elucidating the advancement of hybrid FSW processes for both similar and dissimilar metal components, aimed at enhancing welding quality through meticulous control of grain textures, structures, precipitation, and phase transformations. Finally, the review identifies current knowledge gaps and suggests future research directions. This review paper synthesises academic literature sourced from the Web of Science (WoS) and Scopus databases, supplemented by additional sources such as books from the last 15 years.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 2","pages":"327 - 361"},"PeriodicalIF":2.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01847-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Cr addition on microstructure, mechanical properties, and corrosion behavior of weld metal in weathering steel of high-speed train bogie","authors":"Gaojian Wang, Dandan Kang, Yanhong Ye, Dean Deng","doi":"10.1007/s40194-024-01848-9","DOIUrl":"10.1007/s40194-024-01848-9","url":null,"abstract":"<div><p>The effects of Cr addition on the microstructure, mechanical properties, and corrosion behavior of two weld metals containing Ti or Mo within the Ni-Cu alloys used in high-speed train bogies were investigated. The results show that Cr can increase the acicular ferrite (AF) by about 15%, reduce the primary ferrite (PF) and the ferrite with second phase aligned (FSP), and slightly increase the M-A constituents in the weld containing Ti. Cr addition scarcely alters the AF, leads to a decline in PF and an increase in FSP, and causes a substantial increase in M-A constituents from 0.4 to 2.5% in the as-welded zone containing Mo. Meanwhile, it was found that Cr addition negatively affects weld toughness in the weld containing Mo due to the increase in the proportion and size of M-A constituents and the coarsening of inclusions. Regarding the corrosion resistance, Cr addition can promote the absorption of Cr on the surface of inclusions. This is the main reason for the reduction of the initial corrosion rate of the weld containing Mo, while this effect is attenuated in the welds containing Ti. In addition, Cr addition can densify the inner and outer rust layers, thereby reducing the corrosion rate of the welding rust layer.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3115 - 3128"},"PeriodicalIF":2.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}