Tribology Letters最新文献

筛选
英文 中文
The Effect of Friction Radius Variation on the Friction-Induced Vibration and Noise 摩擦半径变化对摩擦引起的振动和噪音的影响
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-10-01 DOI: 10.1007/s11249-024-01923-8
Sujie Li, Zaiyu Xiang, Songlan Xie, Jiakun Zhang, Zhengming Xiao, Bin Tang, Deqiang He
{"title":"The Effect of Friction Radius Variation on the Friction-Induced Vibration and Noise","authors":"Sujie Li, Zaiyu Xiang, Songlan Xie, Jiakun Zhang, Zhengming Xiao, Bin Tang, Deqiang He","doi":"10.1007/s11249-024-01923-8","DOIUrl":"10.1007/s11249-024-01923-8","url":null,"abstract":"<div><p>In mechanical equipment friction pairs, there are instances of varying friction radius (e.g., brake pads in trains), but the impact of variation in friction radius on friction-induced vibration noise (FIVN) has not yet been clearly understood and has drawn little attention. To address this, a series of tests under different friction radii were carried out using a CETR friction and wear tester, and a finite element model(FEM) based on the main structure of the tester was established to carry out complex modal and transient dynamic simulations. Furthermore, a two-degree-of-freedom (2-DOF) numerical model was proposed to analyze the stability and dynamic characteristics of the ball-disc friction system. Based on the FIVN simulation tests, finite element simulations, and numerical analysis results, the impact of variations in the friction radius on FIVN was discussed. The results indicate that the friction radius is a crucial factor impacting the intensity and evolution of FIVN. Under the experimental parameters employed in this study, the intensity of FIVN increases with the enlargement of the friction radius. Correspondingly, an increase in friction radius significantly increases the friction disc’s wear. The scratches’ width, depth, and wear volume increase. In the friction process, the increase in friction radius leads to an increase in the wear amount of the friction disk, which also results in a significant accumulation of wear debris actively engaging in the frictional process at the interface. Therefore, the degradation of the friction surface becomes increasingly severe and exhibits complex tribological behaviors. The increase in friction radius facilitates modal coupling phenomena in friction systems, inducing high-intensity unstable vibrations within this system. Furthermore, with a larger friction radius, the structure of the friction system is more prone to deform. As the friction ball moves more significantly along with the friction disk, the concentration of contact stress at the interface intensifies notably in the region adjacent to the cutting-in end, accompanied by an increase in the numerical value of the contact stress. In scenarios with a large friction radius, the concentration of contact stress on surfaces is the primary reason for the greater width, depth, and wear volume of the scratches on the friction disc. The 2-DOF numerical model of the ball-disc friction system we established effectively helped us discuss the impact of the friction radius and coefficient of friction (COF) on system stability. It is found that under a large friction radius and COF, the system exhibits modal coupling phenomena, with a state of vibrational instability. The intensity of friction-induced vibration (FIV) also increases with the friction radius. In conclusion, this study finds that the friction radius is a key factor affecting FIVN, and appropriate measures should be taken to improve the tribological behavior of the interface to suppr","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and Chemical Evolution of PTFE-α-Al2O3 Composites Versus 304 SS Tribofilms During Dry Sliding 聚四氟乙烯-α-Al2O3 复合材料与 304 SS 三膜在干滑动过程中的物理和化学变化
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-28 DOI: 10.1007/s11249-024-01922-9
Faysal M. Haque, Christopher P. Junk, Mark A. Sidebottom
{"title":"Physical and Chemical Evolution of PTFE-α-Al2O3 Composites Versus 304 SS Tribofilms During Dry Sliding","authors":"Faysal M. Haque,&nbsp;Christopher P. Junk,&nbsp;Mark A. Sidebottom","doi":"10.1007/s11249-024-01922-9","DOIUrl":"10.1007/s11249-024-01922-9","url":null,"abstract":"<div><p>Polytetrafluoroethylene (PTFE) is renowned for its remarkably low friction coefficient (µ ~ 0.1) yet exhibits notably high wear rates (K ~ 10<sup>4</sup>) in dry sliding applications. To mitigate this, various metallic and non-metallic fillers have been explored, consistently demonstrating a reduction in wear rates of unfilled PTFE between 10 and 10<sup>4</sup> times. Among these fillers, α-Al<sub>2</sub>O<sub>3</sub> is one of the most extensively studied materials. 5 wt% of α-Al<sub>2</sub>O<sub>3</sub> filler into PTFE yields a composite material, PTFE- α-Al<sub>2</sub>O<sub>3</sub>, characterized by a wear rate a staggering 10<sup>4</sup> times lower than unfilled PTFE. This reduction in wear has been attributed to the formation of tribofilms on the PTFE composite and metal counterbody material. These tribofilms emerge due to the interaction between broken fluropolymer chains and environmental water and oxygen. This interaction results in the creation of carboxylate salt groups, which subsequently react with metal/metal oxide particles (both from the counterbody and the metal filler) to form tribofilms. Despite numerous studies scrutinizing the chemical composition of the tribofilms pre- and post-test, the chemical development of these films has remained largely unexplored. In this study, the authors utilize attenuated total reflection infrared spectroscopy (ATR-IR), transmission infrared (IR) spectroscopy, optical microscopy, and stylus profilometry to observe tribofilm development. A thorough topographical and chemical description of the tribofilm is provided via these techniques. The ratio of carboxylate salt groups directly corresponds with improved wear performance and these changes are very local to the worn polymer surface. This discovery contributes to a deeper understanding of the tribological behavior of PTFE-α-Al<sub>2</sub>O<sub>3</sub> composites.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01922-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sliding on Slide-Ring Gels 在滑环凝胶上滑动
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-27 DOI: 10.1007/s11249-024-01920-x
Andrew R. Rhode, Iván Montes de Oca, Michael L. Chabinyc, Christopher M. Bates, Angela A. Pitenis
{"title":"Sliding on Slide-Ring Gels","authors":"Andrew R. Rhode,&nbsp;Iván Montes de Oca,&nbsp;Michael L. Chabinyc,&nbsp;Christopher M. Bates,&nbsp;Angela A. Pitenis","doi":"10.1007/s11249-024-01920-x","DOIUrl":"10.1007/s11249-024-01920-x","url":null,"abstract":"<div><p>Recent investigations have pointed to physical entanglements that greatly outnumber chemical crosslinks as key sources of energy dissipation and low friction in hydrogel networks. Slide-ring gels are an emerging class of hydrogels described by their mobile crosslinks, which are formed by rings topologically constrained to slide along linear polymer chains within the network. These materials have enjoyed decades of study by polymer chemists but have been underexplored by the tribology community. In this work, we synthesized a pseudo-rotaxane crosslinker from poly(ethylene glycol) diacrylate (PEG-diacrylate) and <i>α</i>-cyclodextrin-acrylate followed by hydrogel networks by connecting the sliding crosslinks with polyacrylamide chains. The mechanical and tribological properties of slide-ring hydrogels were investigated using a custom-built microtribometer. Slide-ring hydrogels exhibit unique behavior compared to conventional covalently crosslinked polyacrylamide hydrogels and offer a vast design space for future investigations.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01920-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Graphene and Its Tribological Properties Based on Deep Eutectic Solvent Stripping Method 基于深共晶溶剂剥离法制备石墨烯及其摩擦学特性
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-24 DOI: 10.1007/s11249-024-01919-4
Ting Li, Yun Chen, Rui Wang, Junhai Wang, Xinran Li, Lixiu Zhang
{"title":"Preparation of Graphene and Its Tribological Properties Based on Deep Eutectic Solvent Stripping Method","authors":"Ting Li,&nbsp;Yun Chen,&nbsp;Rui Wang,&nbsp;Junhai Wang,&nbsp;Xinran Li,&nbsp;Lixiu Zhang","doi":"10.1007/s11249-024-01919-4","DOIUrl":"10.1007/s11249-024-01919-4","url":null,"abstract":"<div><p>Graphene (GP), when used as a lubricant additive, not only reduces the friction coefficient but also enhances wear resistance by forming a protective lubrication film. However, there are still several challenges in practical applications related to graphene preparation. Therefore, this study employs a novel type of ionic liquid deep eutectic solvent as an interlayer agent for graphene preparation and investigates its tribological properties when used as an additive. We used choline chloride/ethylene glycol deep eutectic solvent as the intercalation agent and successfully prepared graphene samples using liquid-phase exfoliation. The resulting graphene samples had a thickness of 4–5 layers. The peeling mechanism is analyzed through molecular dynamics simulations and characterization techniques such as Raman spectroscopy, XRD, SEM, and AFM. In friction experiments conducted with different mass fractions of 1.5 wt% DES and 0.05 wt% GP as lubricant additives, it is observed that the mixture exhibits optimal lubrication performance compared to base oil alone; specifically reducing average friction coefficient by 56.8% and depth of wear marks by 59.8%. This enhancement in friction performance can be attributed to both high wettability and synergistic effects between composite lubricants. Considering the wide range of available DESs and two-dimensional materials, these newly developed functional two-dimensional materials based on DES hold significant research potential.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strongly Different Adhesion Reduction for 1D or 2D Random Fractal Roughness, and an Extension of the BAM Model to Anisotropic Surfaces 一维或二维随机分形粗糙度的粘附力降低率截然不同,BAM 模型扩展到各向异性表面
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-19 DOI: 10.1007/s11249-024-01916-7
M. Ciavarella, F. Pérez-Ràfols
{"title":"Strongly Different Adhesion Reduction for 1D or 2D Random Fractal Roughness, and an Extension of the BAM Model to Anisotropic Surfaces","authors":"M. Ciavarella,&nbsp;F. Pérez-Ràfols","doi":"10.1007/s11249-024-01916-7","DOIUrl":"10.1007/s11249-024-01916-7","url":null,"abstract":"<div><p>The influence of roughness on adhesion has been studied since the time of Fuller and Tabor, but recently there has been debate about how roughness exactly seems to kill (but sometimes enhance!) adhesion, particularly with reference to the accepted model of fractal roughness. We show that the Persson–Tosatti criterion does not depend on anisotropy of the surface for a typical power law PSD if written in terms of rms roughness and magnification. Instead, a very simple extension of the Bearing Area Model (BAM) of Ciavarella to anisotropic fractal surface shows a weak but clear dependence on the anisotropy, with higher adhesion in the 1D case, showing better agreement than the Persson–Tosatti criterion to actual numerical results of Afferrante Violano and Dini. However, neither of the two models permit to capture the strong hysteresis found in experiments between loading and unloading, which is very likely to enhance adhesion more as we move from the isotropic to the full 1D case. This suggests the mechanism of load amplification along contact lines and the associated elastic instabilities, is not captured by either the Persson–Tosatti or the BAM model applied to anisotropic surfaces.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01916-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction Enhancement and Autoparametric Resonance 摩擦增强和自参数共振
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-16 DOI: 10.1007/s11249-024-01918-5
S. Yu. Krylov
{"title":"Friction Enhancement and Autoparametric Resonance","authors":"S. Yu. Krylov","doi":"10.1007/s11249-024-01918-5","DOIUrl":"10.1007/s11249-024-01918-5","url":null,"abstract":"<div><p>Recent intriguing experimental observations of atomic scale friction enhancement, that takes place at scanning velocities correspondent with the cantilever frequency and/or its fractions (1/<i>n</i>, <i>n</i> = 1, 2, 3, …), can be explained as the manifestation of an autoparametric resonance. Taking explicitly into account high flexibility of AFM tips, the developed theory reveals the autoparametric resonance to be a natural consequence of the rich dynamics of the combined tip–cantilever system. Besides the explanation of the observed friction force peaks, the theory predicts a dense multiplicity of smaller peaks to appear when the washboard frequency coincides with a rational part (m/n, with integer m and n) of the cantilever frequency. An important conclusion is made that the resonance enhancement of friction is independent of frequency of excited phonons, and it should manifest itself for any possible mechanism of frictional energy dissipation in the substrate, phononic, electronic, or any other.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction Coefficient Evolution of Si3N4 Binary Coating with a Stoichiometric Ratio of 57/43 化学计量比为 57/43 的 Si3N4 二元涂层的摩擦系数演变
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-16 DOI: 10.1007/s11249-024-01909-6
C. H. Ortiz, J. M. Fuertes, M. Bejarano, V. Barrera, J. C. Caicedo
{"title":"Friction Coefficient Evolution of Si3N4 Binary Coating with a Stoichiometric Ratio of 57/43","authors":"C. H. Ortiz,&nbsp;J. M. Fuertes,&nbsp;M. Bejarano,&nbsp;V. Barrera,&nbsp;J. C. Caicedo","doi":"10.1007/s11249-024-01909-6","DOIUrl":"10.1007/s11249-024-01909-6","url":null,"abstract":"<div><p>Friction coefficient depends on various factors or surface characteristics during tribological testing, and this friction coefficient can be modified by altering the properties of one of the two contacting surfaces. It is crucial to monitor the friction coefficient continuously, not only at the conclusion of the test. This research examined the evolution of friction coefficient of silicon nitride (Si<sub>3</sub>N<sub>4</sub>) coating and H13 steel over different sliding distances (250, 500, 750, 1000 m). The study assessed surface wear and oxidation through three-dimensional profilometry and SEM/EDX. The findings indicated a reduction in friction coefficient by 22%, a decrease in wear rate by 88%, and a reduction in wear volume by 87% when comparing the silicon nitride coated steel to the uncoated steel. Furthermore, the changes in friction coefficient provided insights into the timing of the complete fracture of the hard coating.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01909-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Simulation of Contact/Separation Behavior of Platinum Surfaces with Adsorbed Acetylenes 铂表面与吸附的乙炔接触/分离行为的分子模拟
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-12 DOI: 10.1007/s11249-024-01917-6
Chunhong Li, Fangli Duan
{"title":"Molecular Simulation of Contact/Separation Behavior of Platinum Surfaces with Adsorbed Acetylenes","authors":"Chunhong Li,&nbsp;Fangli Duan","doi":"10.1007/s11249-024-01917-6","DOIUrl":"10.1007/s11249-024-01917-6","url":null,"abstract":"<div><p>Ambient hydrocarbons adsorbed on the contact surface of nanoelectromechanical (NEM) switches would impact its performance. In this study, we utilized reactive molecular dynamics simulations to investigate the cyclic contact/separation process of Pt(111)/C<sub>2</sub>H<sub>2</sub>/Pt(111) systems. Our results demonstrate that substrate damage decreases as acetylene coverage increases from sub-monolayer to multilayer. This suppression occurs due to the presence of acetylene molecules, which can suppress direct (Pt–Pt connection) and indirect (Pt–(C<sub><i>x</i></sub>)–Pt-like connection) interfacial bonding between the two substrates, depending on their coverage. Moreover, we observed the formation of chain-like oligomers after multiple contact/separation simulations in the monolayer model, much more significantly compared with the sub-monolayer and multilayer models. These oligomers arise from polymerization reactions among fragmented acetylene molecules, primarily formed through acetylene dehydrogenation. In the sub-monolayer model, numerous transferred Pt atoms at the interface hinder bonding between acetylene fragments, whereas in the multilayer model, only a few acetylene fragments form during the contact process, due to the well-organized and dense acetylene layer adsorbed on the substrate surfaces. These insights shed light on the atomic-scale mechanisms underlying substrate damage and chain-like oligomers formation in metal NEM switches.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Newly Developed Heavy-Haul Wheel Steel with Excellent Rolling Contact Fatigue Performance Assessed by an Innovative Vision System 通过创新视觉系统评估新开发的具有优异滚动接触疲劳性能的重型卡车车轮钢材
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-06 DOI: 10.1007/s11249-024-01914-9
Ting-wei Zhou, Hai Zhao, Hang Yuan, Zhen-lin Xu, Yi-zhu He, Shi-huai Su, Dong-fang Zeng
{"title":"A Newly Developed Heavy-Haul Wheel Steel with Excellent Rolling Contact Fatigue Performance Assessed by an Innovative Vision System","authors":"Ting-wei Zhou,&nbsp;Hai Zhao,&nbsp;Hang Yuan,&nbsp;Zhen-lin Xu,&nbsp;Yi-zhu He,&nbsp;Shi-huai Su,&nbsp;Dong-fang Zeng","doi":"10.1007/s11249-024-01914-9","DOIUrl":"10.1007/s11249-024-01914-9","url":null,"abstract":"<div><p>As railway transportation advances towards higher speeds and increased axle loads, the fatigue damage between wheels and rails has become more severe, significantly limiting the service life and safety of trains. Therefore, developing upgrade wheel-rail materials with enhanced contact fatigue properties has been considered an effective approach to avoid damage. This study reports a newly developed heavy-haul wheel steel with a superior rolling contact fatigue performance and the fatigue damage of wheel was studied by a novel RCF tester with a vision system. The results indicate that the newly developed heavy-haul wheel steel (NW) consists of smaller pearlite layer spacing and reduced proeutectoid ferrite. The NW steel demonstrates outstanding fatigue resistance in both oil and dry conditions, with a fatigue life 2.7 times longer than CL65 wheel steel and superior performance compared to most typical wheel steels. With increasing in pearlite content and decreasing in pearlitic interlamellar spacing, the fatigue damage degree of wheels under oil or dry contact conditions decreases obviously, leading to a significant enhancement in fatigue life. Properly controlling the pearlite content and the interlamellar spacing can optimize the fatigue properties of wheel materials. The vision system observed that the average area and perimeter of the defects gradually increased on the sample surface. The shape of the defect became more rounded under oil contact conditions but showed the opposite result in dry contact. When subjected to cyclic loading, surface cracks propagated along various paths after initiation, eventually forming different morphologies of peeling. The results will not only help optimize wheel materials for heavy-haul railways, but also offer an effective means for analyzing damage evolution in wheel-rail contact.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale Parametrization Of a Friction Model For Metal Cutting Using Contact Mechanics, Atomistic Simulations, And Experiments 利用接触力学、原子模拟和实验对金属切削摩擦模型进行多尺度参数化研究
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-09-05 DOI: 10.1007/s11249-024-01906-9
Hannes Holey, Florian Sauer, Prasanth Babu Ganta, Leonhard Mayrhofer, Martin Dienwiebel, Volker Schulze, Michael Moseler
{"title":"Multiscale Parametrization Of a Friction Model For Metal Cutting Using Contact Mechanics, Atomistic Simulations, And Experiments","authors":"Hannes Holey,&nbsp;Florian Sauer,&nbsp;Prasanth Babu Ganta,&nbsp;Leonhard Mayrhofer,&nbsp;Martin Dienwiebel,&nbsp;Volker Schulze,&nbsp;Michael Moseler","doi":"10.1007/s11249-024-01906-9","DOIUrl":"10.1007/s11249-024-01906-9","url":null,"abstract":"<div><p>In this study, we developed and parametrized a friction model for finite element (FE) cutting simulations of AISI4140 steel, combining experimental data and numerical simulations at various scales. Given the severe thermomechanical loads during cutting, parametrization of friction models based on analogous experiments has been proven difficult, such that the cutting process itself is often used for calibration. Instead, our model is based on the real area of contact between rough surfaces and the stress required to shear adhesive micro contacts. We utilized microtextured cutting tools and their negative imprint on chips to orient chip and tool surfaces, enabling the determination of a combined surface roughness. This effective roughness was then applied in contact mechanics calculations using a penetration hardness model informed by indentation hardness measurements. Consistent with Bowden and Tabor theory, we observed that the fractional contact area increased linearly with the applied normal load, and the effective roughness remained insensitive to cutting fluid application. Additionally, we calculated the required shear stress as a function of normal load using DFT-based molecular dynamics simulations for a tribofilm formed at the interface, with its composition inferred from ex-situ XPS depth profiling of the cutting tools. Our friction model demonstrated good agreement with experimental results in two-dimensional FE chip forming simulations of orthogonal cutting processes, evaluated by means of cutting force, passive force, and contact length prediction. This work presents a proof of concept for a physics-based approach to calibrate constitutive models in metal cutting, potentially advancing the use of multiscale and multiphysical simulations in machining.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01906-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信