Tribology Letters最新文献

筛选
英文 中文
Friction in Rolling a Cylinder on or Under a Viscoelastic Substrate with Adhesion 在粘性基底上或基底下滚动圆柱体时的摩擦力
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-04-07 DOI: 10.1007/s11249-024-01849-1
R. Nazari, A. Papangelo, M. Ciavarella
{"title":"Friction in Rolling a Cylinder on or Under a Viscoelastic Substrate with Adhesion","authors":"R. Nazari,&nbsp;A. Papangelo,&nbsp;M. Ciavarella","doi":"10.1007/s11249-024-01849-1","DOIUrl":"10.1007/s11249-024-01849-1","url":null,"abstract":"<div><p>In classical experiments, it has been found that a rigid cylinder can roll both on and <i>under</i> an inclined rubber plane with a friction force that depends on a power law of velocity, independent of the sign of the normal force. Further, contact area increases significantly with velocity with a related power law. We try to model qualitatively these experiments with a numerical boundary element solution with a standard linear solid and we find for sufficiently large Maugis–Tabor parameter <span>(lambda)</span> qualitative agreement with experiments. However, friction force increases linearly with velocity at low velocities (like in the case with no adhesive hysteresis) and then decays at large speeds. Quantitative agreement with the Persson–Brener theory of crack propagation is found for the two power law regimes, but when Maugis–Tabor parameter <span>(lambda)</span> is small, the cut-off stress in Persson–Brener theory depends on all the other dimensionless parameters of the problem.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01849-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological Property and Corrosion of Imidazolium-Based Ionic Liquid-Lubricated Steel Sliding Against Anodic Oxide Film on Al-Li Alloy in the Presence of Bubbles Produced by Synergistic Action of Electric Field and Friction 电场和摩擦力协同作用产生气泡时咪唑基离子液体润滑钢在铝锂合金阳极氧化膜上滑动的摩擦学特性和腐蚀性能
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-04-06 DOI: 10.1007/s11249-024-01852-6
Jiawei Cao, Rong Qu, Long Chen, Ruiqing Yao, Jinjun Lu
{"title":"Tribological Property and Corrosion of Imidazolium-Based Ionic Liquid-Lubricated Steel Sliding Against Anodic Oxide Film on Al-Li Alloy in the Presence of Bubbles Produced by Synergistic Action of Electric Field and Friction","authors":"Jiawei Cao,&nbsp;Rong Qu,&nbsp;Long Chen,&nbsp;Ruiqing Yao,&nbsp;Jinjun Lu","doi":"10.1007/s11249-024-01852-6","DOIUrl":"10.1007/s11249-024-01852-6","url":null,"abstract":"<div><p>The tribological property and corrosion of a steel ball sliding against anodic oxide film (AOF) on Al-Li alloy lubricated by an ionic liquid (imidazolium hexafluorophosphate, LP108) are investigated without and with electric field. Upon sliding, no bubbles are observed without electric field (0 V) and with electric field at 1 V, while bubbles are produced continually with electric field at applied voltages of 5 V and 10 V. Higher voltage produces more bubbles. It is found that bubbles accelerate the worn-out of the AOF in sliding and corrosion of the steel ball after sliding. In the absence of bubbles, friction coefficient lower than 0.1 and long wear lifetime suggest that LP108 is a good lubricant at both 0 V and 1 V. In the presence of bubbles, however, AOF is rapidly worn out, i.e., 3.3±0.2 min at 5 V and 1.6±0.3 min at 10 V. Because the bubbles are produced continually at 5 V and 10 V, there is a rapid transition of the lubricating regime from a flooded state (boundary lubrication regime) to a bubble-dominated state (dry sliding regime). By turning off the electric field after one-minute sliding (no more newly born bubbles), the effective lubrication by LP108 can be preserved. Once the tribo-test is ended, the collapse of the bubbles occurs rapidly and hence the corrosion of the steel ball is greatly accelerated when compared to that in the absence of bubbles. In addition to bubble collapse, the bubbles are responsible for the accelerated corrosion of the steel ball because they are the reactive species of electrochemical decomposition of LP108 by synergistic action of electric field and friction, which is supported by experimental evidence. In other words, neither sliding friction without electric field nor electric field without sliding friction up to 10 V produces bubbles. A friction-activated mechanism is proposed to explain the synergistic action of electric field and friction. In short, sliding friction produces wear of the steel ball and this initiates friction activation of the worn surface of the steel ball. Consequently, the generation of bubbles occurs.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Anionic Alkyl Chain Length on Tribological Properties of Ionic Liquids: Molecular Dynamics Simulations 阴离子烷基链长对离子液体摩擦学特性的影响:分子动力学模拟
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-04-05 DOI: 10.1007/s11249-024-01843-7
Zhen Ma, Fangli Duan
{"title":"Effect of Anionic Alkyl Chain Length on Tribological Properties of Ionic Liquids: Molecular Dynamics Simulations","authors":"Zhen Ma,&nbsp;Fangli Duan","doi":"10.1007/s11249-024-01843-7","DOIUrl":"10.1007/s11249-024-01843-7","url":null,"abstract":"<div><p>Ionic liquids (ILs) are widely adopted as lubricating materials in engineering fields for steel sliding contacts, and the adsorption structure and kinematic state of friction surfaces are crucial for understanding the improvement of tribological properties in experiments. In this study, we employed molecular dynamics methods to examine the structure and shear dynamics of five ILs with the same cationic triethanolamine paired with carboxylate anions of different alkyl chain length, confined between two crystalline iron surfaces. The results show that the chain length of anions influence the quantity of hydrogen bonds formed, the distribution on the iron surfaces, the thickness of the adsorption layers during the sliding process and the overall motion state. Under elastohydrodynamic lubrication conditions, ILs with longer alkyl chain exhibit less friction on a macroscopic scale due to the weaker hydrogen bonds between the anions and cations, the formation of thicker adsorption layers between sliding surfaces, and the overall pronounced layering phenomenon. These atomic insights into the structure and state of motion during friction can help promote the use of ILs as lubricating materials in engineering applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction Enhancement Through Fingerprint-like Soft Surface Textures in Soft Robotic Grippers for Grasping Abilities 通过软机器人抓手中的指纹状软表面纹理增强摩擦力,提高抓取能力
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-04-04 DOI: 10.1007/s11249-024-01848-2
Tianze Hao, Huaping Xiao, Jutao Wang, Xiaofei Wang, Shuhai Liu, Qingjian Liu
{"title":"Friction Enhancement Through Fingerprint-like Soft Surface Textures in Soft Robotic Grippers for Grasping Abilities","authors":"Tianze Hao,&nbsp;Huaping Xiao,&nbsp;Jutao Wang,&nbsp;Xiaofei Wang,&nbsp;Shuhai Liu,&nbsp;Qingjian Liu","doi":"10.1007/s11249-024-01848-2","DOIUrl":"10.1007/s11249-024-01848-2","url":null,"abstract":"<div><p>Flexible surface textures are often utilized in the design of robots that need to manipulate objects requiring a strong frictional force. In this study, we designed and prepared flexible silicone rubber films with surface textures inspired by groove patterns found at the tips of human fingers. These designs included loop, whorl, and arch patterns, as well as horizontal and vertical stripe textures as a control group. On the basis of surface morphology analysis, we established a relative sliding test platform to collect coefficient of friction (COF) through relative sliding tests of soft surface textures and rigid plane contact pairs. The friction coefficient guides the characterization of the contact properties in the finite element simulation process. According to the results of friction testing, the loop, whorl, and horizontal stripe exhibit a higher friction coefficient under variable contact stress, while the arch and vertical stripe display a lower coefficient. The variation patterns of the contact surfaces between a rigid surface and five distinct types of soft surface textures were analyzed by simulating the friction process using Abaqus explicit dynamic analysis. The deformation of the soft surface textures under different contact stresses is subsequently described in terms of elastic strain energy. Compared to the vertical stripe texture, loop, whorl, and arch exhibit greater recoverable strain energy during the relative sliding stage, which means a larger average elastic displacement. Subsequently, different soft surface textures are integrated onto the fingertip of a soft robotic hand, and the grasping ability is evaluated within lubrication-related medical scenarios. The texture perpendicular to the movement direction exhibits a higher friction-producing capability compared to the texture aligned parallel to it. Due to the intricate surface texture patterns, it demonstrates greater adaptability for relative motion in all directions. This research proposes a soft robotic hand incorporating a surface texture resembling fingerprint-like surface texture. By employing experimentation and finite element simulation, this study utilizes surface engineering design to comprehend the contact characteristics involved in the grasping process of a soft robotic hand.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Elastohydrodynamic Lubrication and Vibration Behavior of Rolling Bearings Using a Hybrid Bio-Grease Blended with Activated Carbon Nanoparticles 使用混合了活性碳纳米颗粒的混合生物润滑脂增强滚动轴承的弹流润滑和振动性能
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-04-01 DOI: 10.1007/s11249-024-01847-3
Zeyad A. Abouelkasem, Galal A. Nassef, Mohamed Abdelnaeem, Mohamed G. A. Nassef
{"title":"Enhancing the Elastohydrodynamic Lubrication and Vibration Behavior of Rolling Bearings Using a Hybrid Bio-Grease Blended with Activated Carbon Nanoparticles","authors":"Zeyad A. Abouelkasem,&nbsp;Galal A. Nassef,&nbsp;Mohamed Abdelnaeem,&nbsp;Mohamed G. A. Nassef","doi":"10.1007/s11249-024-01847-3","DOIUrl":"10.1007/s11249-024-01847-3","url":null,"abstract":"<div><p>In recent years, bio-lubricants have received a growing interest for industrial applications. Still, a full-scale implementation in machinery lubrication requires a thorough evaluation of their performance through tribological and operational tests to stand upon their performance. Additionally, the promising outcomes achieved by nanoadditives in improving the performance of synthetic lubricants have prompted research efforts to identify suitable nanoadditives for bio-grease. This paper introduces a bio-grease from a hybrid vegetable oil and glycerol monostearate as a thickener for the lubrication of rolling bearings. Activated carbon nanoparticles (ACNPs) as nanoadditives were synthesized, characterized, and incorporated into the bio-grease at concentrations of 0.5, 1, and 2% by weight. Tribo-tests were conducted on these bio-grease blends, and running tests were carried out using 6006 ball bearings on a custom test rig. Throughout a 30-min test run under a radial load of 10% of the bearing’s dynamic load rating, mechanical vibrations and power consumption were measured and analyzed for each bearing. The bio-grease with ACNPs exhibited a substantial reduction in wear scar diameter (WSD) and coefficient of friction (COF), achieving improvements of up to 73.6 and 65%, respectively, in comparison to lithium grease. Furthermore, the load carrying capacity was enhanced by 200%. The study revealed a strong correlation between measured vibration amplitudes and the viscosity of the bio-grease. The absence of high frequency resonant bands in vibration spectra indicated that the test grease samples satisfied the conditions of elastohydrodynamic lubrication, and these findings were corroborated through calculations of the minimum oil film thickness.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01847-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Use of Alternative Measurement Methods in the Estimation of Wear Rates in Rotary-Pin-on-Disk Tribometry 论使用替代测量方法估算旋转销盘摩擦磨损率
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-03-26 DOI: 10.1007/s11249-024-01841-9
Krishna Chaitanya Solasa, N. V. Venkataraman, Palash Roy Choudhury, John K. Schueller, Abhijit Bhattacharyya
{"title":"On the Use of Alternative Measurement Methods in the Estimation of Wear Rates in Rotary-Pin-on-Disk Tribometry","authors":"Krishna Chaitanya Solasa,&nbsp;N. V. Venkataraman,&nbsp;Palash Roy Choudhury,&nbsp;John K. Schueller,&nbsp;Abhijit Bhattacharyya","doi":"10.1007/s11249-024-01841-9","DOIUrl":"10.1007/s11249-024-01841-9","url":null,"abstract":"<div><p>Do two different and independent methods of estimating the wear rate of a test sample yield the same numerical result? Numerical values of specific wear rates estimated on the basis of alternative methods using a set of dry sliding rotary-pin-on-disk experiments are presented. Wear rates of brass and aluminium alloy pins were estimated using gravimetric and wear scar area methods. Gravimetric and linear displacement methods were used to assess wear rates of ABS plastic and machinable wax pins. Scepticism about the estimated nominal values of wear rates is reduced when alternative assessment methods result in comparable numerical values, or values having the same order of magnitude. This is particularly useful when ranking competing materials for wear rates, when the differences in these rates are small. Uncertainties in individual test sample wear rates, and dispersion in the nominal values of wear rates are also computed to support the aforementioned observations.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Ski–Snow Contact Mechanics During the Double Poling Cycle in Cross-Country Skiing 论越野滑雪双杆周期中的滑雪板与雪地接触力学
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-03-25 DOI: 10.1007/s11249-024-01839-3
Gustav Hindér, Kalle Kalliorinne, Joakim Sandberg, Andreas Almqvist, Hans-Christer Holmberg, Roland Larsson
{"title":"On Ski–Snow Contact Mechanics During the Double Poling Cycle in Cross-Country Skiing","authors":"Gustav Hindér,&nbsp;Kalle Kalliorinne,&nbsp;Joakim Sandberg,&nbsp;Andreas Almqvist,&nbsp;Hans-Christer Holmberg,&nbsp;Roland Larsson","doi":"10.1007/s11249-024-01839-3","DOIUrl":"10.1007/s11249-024-01839-3","url":null,"abstract":"<div><p>Of the medals awarded during the Winter Olympics Games, most are awarded for sports involving cross-country (XC) skiing. The Double Poling (DP) technique, which is one of the sub-techniques used most frequently in XC skiing, has not yet been studied using simulations of the ski–snow contact mechanics. This work introduces a novel method for analysing how changes in the distribution of pressure on the sole of the foot (Plantar Pressure Distribution or PPD) during the DP motion affect the contact between the ski and the snow. The PPD recorded as the athlete performed DP, along with an Artificial Neural Network trained to predict the geometry of the ski (ski-camber profile), were used as input data for a solver based on the boundary element method, which models the interaction between the ski and the snow. This solver provides insights into how the area of contact and the distribution of pressure on the ski-snow interface change over time. The results reveal that variations in PPD, the type of ski, and the stiffness of the snow all have a significant impact on the contact between the ski and the snow. This information can be used to improve the Double Poling technique and make better choices of skis for specific snow conditions, ultimately leading to improved performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01839-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Dynamics Study on the Mechanism of Improved Tribological Properties of Nano-ZnO with Decanol Lubrication 癸醇润滑改善纳米氧化锌摩擦学特性机理的分子动力学研究
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-03-22 DOI: 10.1007/s11249-024-01840-w
Min Ji, Yaowen Chen, Ying Wang, Feichi Zhang, Jing Li, Haijun Pan, Yujie Zhao, Zhen Zhang, Lin Liu
{"title":"Molecular Dynamics Study on the Mechanism of Improved Tribological Properties of Nano-ZnO with Decanol Lubrication","authors":"Min Ji,&nbsp;Yaowen Chen,&nbsp;Ying Wang,&nbsp;Feichi Zhang,&nbsp;Jing Li,&nbsp;Haijun Pan,&nbsp;Yujie Zhao,&nbsp;Zhen Zhang,&nbsp;Lin Liu","doi":"10.1007/s11249-024-01840-w","DOIUrl":"10.1007/s11249-024-01840-w","url":null,"abstract":"<div><p>This study employs molecular dynamics simulation to examine the tribological behavior of nano zinc oxide (nano-ZnO) lubricated with decanol. The changes in electrostatic interaction energy, molecular structure, and chemical reactions during the friction process were analyzed. For ZnO-decanol-ZnO system, the simulation revealed a notable reduction in the coefficient of friction for nano-ZnO, decreasing from 0.49 (at 0.5 GPa and 100 m/s) to 0.18 (at 3 GPa and 20 m/s). This improvement is attributed to the enhanced adsorption ability and temperature stabilization provided by the decanol lubricant. Furthermore, an increase in velocity induces elastoplastic deformation and wear on the sliding surface, leading to a decline in tribological performance.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ XPS Analysis of Tribo-chemical Behavior in Titanium Alloy Exposed to Fretting Wear Under the Vacuum Environments 原位 XPS 分析真空环境下遭受摩擦磨损的钛合金中的三化学特性
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-03-22 DOI: 10.1007/s11249-024-01842-8
Jianjun Long, Xuejiao Wei, Yiting Dong, Xixi Cheng, Hao Li, Xiaojun Xu, Minhao Zhu
{"title":"In Situ XPS Analysis of Tribo-chemical Behavior in Titanium Alloy Exposed to Fretting Wear Under the Vacuum Environments","authors":"Jianjun Long,&nbsp;Xuejiao Wei,&nbsp;Yiting Dong,&nbsp;Xixi Cheng,&nbsp;Hao Li,&nbsp;Xiaojun Xu,&nbsp;Minhao Zhu","doi":"10.1007/s11249-024-01842-8","DOIUrl":"10.1007/s11249-024-01842-8","url":null,"abstract":"<div><p>A systematic experimental investigation concerning the fretting-induced tribo-chemical state and its effect on the fretting wear behavior of titanium alloys under the vacuum atmospheres (4 × 10<sup>–3</sup> Pa and 4 × 10<sup>–1</sup> Pa) in different fretting regimes is reported. An in situ XPS analysis tester was developed to capture the real tribo-chemical state of worn surface for all test conditions. Results show that samples subjected to different vacuum atmospheres have varied tribo-chemical states depending on the fretting regime, which play significantly different roles in determining the associated damage mechanisms and the resulting fretting wear resistance. Under both vacuum atmospheres, in the partial slip regime (PSR) the worn scars were mainly covered by TiO<sub>2</sub>, showing comparable levels of very slight damage, while in the mixed fretting regime (MFR), the tribo-layer is still mainly consisted of TiO<sub>2</sub>, but with an evident peak of Ti metal for the high vacuum degree (4 × 10<sup>–3</sup> Pa) in MFR, showing a mild damage. In contrast, in the gross slip regime (GSR), Ti metal was prone to be oxidized to Ti<sub>2</sub>O<sub>3</sub> and TiO on the worn scar, especially for the low vacuum degree (4 × 10<sup>–1</sup> Pa) having a highest content of Ti<sub>2</sub>O<sub>3</sub>. It might be inferred that the tribo-layer containing more Ti<sub>2</sub>O<sub>3</sub> formed during fretting wear process is susceptible to be broken, hence showing a highest fretting wear volume in GSR for the low vacuum degree. The results suggest that for the vacuum environments, the Ti6Al4V may be more suitable to be used under the high vacuum atmosphere.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric Contact Synergy of Unequal-Sized Soft and Hard Clusters in Highly Concentrated ZnCl2 for Heterogeneous Superlubricants 高浓度 ZnCl2 中大小不等的软硬团簇的非对称接触协同作用,用于制造异质超级润滑剂
IF 2.9 3区 工程技术
Tribology Letters Pub Date : 2024-03-14 DOI: 10.1007/s11249-024-01846-4
Manqiang Liu, Hongyu Liang, Xinjie Chen, Tianqiang Yin, Yongfeng Bu
{"title":"Asymmetric Contact Synergy of Unequal-Sized Soft and Hard Clusters in Highly Concentrated ZnCl2 for Heterogeneous Superlubricants","authors":"Manqiang Liu,&nbsp;Hongyu Liang,&nbsp;Xinjie Chen,&nbsp;Tianqiang Yin,&nbsp;Yongfeng Bu","doi":"10.1007/s11249-024-01846-4","DOIUrl":"10.1007/s11249-024-01846-4","url":null,"abstract":"<div><p>Low ionic concentrations and the chemical stability of the ions involved to water are considered necessary for hydrated ionic solution lubricants. Herein, an ultra-high concentration of chemically active ZnCl<sub>2</sub> aqueous solution (up to 20 mol L<sup>− 1</sup>) is first reported to be used as a liquid superlubricant, with trace amounts of Zn<sup>2+</sup> hydrolyzed to generate Zn(OH)<sub>2</sub> (i.e., hard clusters) in addition to Zn<sup>2+</sup> hydrated with water (i.e., soft clusters), resulting in the formation of heterogeneous phases with a mixture of soft and hard clusters. The coefficient of friction (COF) inversely correlates with the molar concentration of ZnCl<sub>2</sub>, where the COF of the optimized samples can be as low as 0.006 with a stable macroscopic superlubricated state; the particle size distribution of clusters and their corresponding Spans, however, are positively correlated with the molar concentration, suggesting that asymmetric contact between these unequal-sized soft and hard clusters contributes greatly to the reduction of interfacial shear resistances. This ultra-high-concentration aqueous solution superlubricant not only breaks the convention but also deepens the mechanism of liquid superlubricity from the perspectives of cluster size distribution and interactions between clusters, providing a new insight into the design of advanced water-based ionic solution superlubricants.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信