{"title":"Radial Expansion Favors the Burrowing Behavior of <i>Urechis unicinctus</i>.","authors":"Shanpeng Li, Yun Zhang, Ruihua Zhang, Jianlin Liu","doi":"10.1155/2023/2478606","DOIUrl":"10.1155/2023/2478606","url":null,"abstract":"<p><p><i>Urechis unicinctus</i> can utilize the ability of large deformation to advance in sands by radial expansion, just using a small force. However, the large deformation of <i>U. unicinctus</i> skin and the discrete nature of the sands make it hard to analyze this process quantitatively. In this study, we aim to uncover the burrowing mechanism of <i>U. unicinctus</i> in granular sediments by combining discrete and finite elements. We observe that <i>U. unicinctus</i> will expand radially at the head, and then the head will shrink to move forward. The radial expansion will collapse the sands and let them flow, making it easy to advance. <i>U. unicinctus</i> mainly relies on the skin's large deformation and sufficient pressure to achieve radial expansion. Thus, we first establish the large deformation constitutive model of the skin. The stress-strain relationship can be expressed by the Yeoh model. Meanwhile, the pressure required for radial expansion is indirectly measured by the balloon experiment. To study the effect of radial expansion on the burrowing behavior, we use the finite element method-discrete element method (FEM-DEM) coupling model to simulate the expansion process of burrowing. The simulated pressure for radial expansion is very close to the experimental data, verifying the reliability of the simulation. The results show that the expansion can drastically reduce the pressure of sand particles on the head front face by 97.1% ± 0.6%, significantly decreasing the difficulty of burrowing. This unique underwater burrow method of <i>U. unicinctus</i> can provide new ideas for engineering burrowing devices in soft soil, especially for granular sediments.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2023 ","pages":"2478606"},"PeriodicalIF":2.2,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41189247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Efficacy and Safety of Rituximab in the Treatment of Idiopathic Membranous Nephropathy: A Meta-Analysis.","authors":"Applied Bionics And Biomechanics","doi":"10.1155/2023/9756164","DOIUrl":"10.1155/2023/9756164","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.1155/2022/5393797.].</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2023 ","pages":"9756164"},"PeriodicalIF":2.2,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41189253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Data-Driven Approach for Fatigue Detection during Running Using Pedobarographic Measurements.","authors":"Zixiang Gao, Liangliang Xiang, Gusztáv Fekete, Julien S Baker, Zhuqing Mao, Yaodong Gu","doi":"10.1155/2023/7022513","DOIUrl":"10.1155/2023/7022513","url":null,"abstract":"<p><strong>Background: </strong>Detecting fatigue at the early stages of a run could aid training programs in making adjustments, thereby reducing the heightened risk of injuries from overuse. The study aimed to investigate the effects of running fatigue on plantar force distribution in the dominant and nondominant feet of amateur runners.</p><p><strong>Methods: </strong>Thirty amateur runners were recruited for this study. Bilateral time-series plantar forces were employed to facilitate automatic fatigue gait recognition using convolutional neural network (CNN) and CNN-based long short-term memory network (ConvLSTM) models. Plantar force data collection was conducted both before and after a running-induced fatigue protocol using a FootScan force plate. The Keras library in Python 3.8.8 was used to train and tune deep learning models.</p><p><strong>Results: </strong>The results demonstrated that more mid-forefoot and heel force occurs during bilateral plantar and less midfoot fore force occurs in the dominant limb after fatigue (<i>p</i> < 0.001). The time of peak forces was significantly shortened at the midfoot and sum region of the nondominant foot, while it was delayed at the hallux region of the dominant foot (<i>p</i> < 0.001). In addition, the ConvLSTM model showed higher performance (Accuracy = 0.867, Sensitivity = 0.874, and Specificity = 0.859) in detecting fatigue gait than CNN (Accuracy = 0.800, Sensitivity = 0.874, and Specificity = 0.718).</p><p><strong>Conclusions: </strong>The findings of this study could offer empirical data for evaluating risk factors linked to overuse injuries in a single limb, as well as facilitate early detection of fatigued gait.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2023 ","pages":"7022513"},"PeriodicalIF":2.2,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41098570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Performance Method for Brain Tumor Feature Extraction in MRI Using Complex Network.","authors":"Thanh Han Trong, Hinh Nguyen Van, Luu Vu Dang","doi":"10.1155/2023/8843488","DOIUrl":"10.1155/2023/8843488","url":null,"abstract":"<p><strong>Objective: </strong>To localize and distinguish between benign and malignant tumors on MRI.</p><p><strong>Method: </strong>This work proposes a high-performance method for brain tumor feature extraction using a combination of complex network and U-Net architecture. And then, the common machine-learning algorithms are used to discriminate between benign and malignant tumors. <i>Experiments and Results</i>. The dataset of brain MRI of a total of 230 brain tumor patients in which 77 high-grade glioma patients and 153 low-grade glioma patients were processed. The results of classifying benign and malignant tumors achieved an accuracy of 99.84%.</p><p><strong>Conclusion: </strong>The high accuracy of experiment results demonstrates that the use of the complex network and U-Net architecture can significantly improve the accuracy of brain tumor classification. This method could potentially be useful for clinicians in aiding diagnosis and treatment planning for brain tumor patients.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2023 ","pages":"8843488"},"PeriodicalIF":2.2,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41102571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Clinical Characteristics, Treatment, and Visual Prognosis in Pediatric Endophthalmitis: A 232-Case Retrospective Study.","authors":"Applied Bionics And Biomechanics","doi":"10.1155/2023/9817126","DOIUrl":"10.1155/2023/9817126","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.1155/2022/8523747.].</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2023 ","pages":"9817126"},"PeriodicalIF":1.8,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10064985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of the Angles of a Robotic Arm with 7-Free Degrees Using an Improved Hybrid ESSA Algorithm","authors":"Inayet Hakki Cizmeci, A. A. Altun","doi":"10.1155/2023/9169050","DOIUrl":"https://doi.org/10.1155/2023/9169050","url":null,"abstract":"The electro-search algorithm (ESO) encounters challenges arising from its slow convergence rate and propensity to descend into local optima. In this study, a hybrid variant based on simulated annealing (SA), termed electro search simulated annealing (ESSA), is proposed to tackle these issues and surmount the obstacles. SA assists the proposed ESSA in escaping local optima through the cooling process while propelling individuals within the population. As these propelled individuals search for new positions, they engage in exploration and consequently approach the global optimum. This establishes a balance between exploitation and exploration for ESSA. ESSA has been compared with 10 metaheuristic algorithms on 15 benchmark functions with dimensions of 100, 500, and 1,000. The experimental results demonstrate its high-solution accuracy. Moreover, ESSA has been tested in the optimization of a robotic arm, a technology that requires low-error rates in the medical field. The analysis reveals the competitiveness and advantages of the proposed ESSA algorithm.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47731918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyan Meng, Na Li, Yang Hu, Dazheng Zhao, Guoning Li, Jingyan Hu, Tao Song, Yehao Ma, Rongzhen Fu, Guokun Zuo, Liang Tao, Min Tang, Yunfeng Liu, Changcheng Shi
{"title":"Effects of Error Modulation-Based Visual and Haptic Feedback Fusion Strategies on Motor Learning and Motivation","authors":"Jingyan Meng, Na Li, Yang Hu, Dazheng Zhao, Guoning Li, Jingyan Hu, Tao Song, Yehao Ma, Rongzhen Fu, Guokun Zuo, Liang Tao, Min Tang, Yunfeng Liu, Changcheng Shi","doi":"10.1155/2023/8974148","DOIUrl":"https://doi.org/10.1155/2023/8974148","url":null,"abstract":"Visual or haptic feedback based on error modulation has been used to improve the effect of robot-assisted rehabilitation training. However, there are several investigations on the effects of error modulation-based visual and haptic feedback fusion strategies on motor learning and motivation. To observe the influence of different feedback fusion strategies on motor learning and motivation, a parallel controlled study was conducted, dividing 30 healthy subjects into three groups with similar skill levels. The no error modulation group received visual and haptic feedback without error modulation; the visual amplification haptic reduction group received visual error amplification combined with haptic error reduction, and the visual reduction haptic amplification (VRHA) group received visual error reduction combined with haptic error amplification. Each subject implemented a trajectory-tracking task with an upper limb rehabilitation robot. They went through baseline, training, assessment, and generalization tests and completed 340 consecutive tracking movements. To evaluate motor learning and motivation, the average tracking error, the root mean square (RMS) of surface electromyography (sEMG) signals, and the intrinsic motivation inventory scale were all examined. In the assessment tests, the average tracking error was significantly decreased in all three groups. In particular, the VRHA group had a larger reduction in average tracking error in the generalization test, lower RMS of sEMG signals both in the assessment and generalization tests and higher perceived competence in the assessment tests. The VRHA fusion strategy significantly improved the subjects’ motor learning and transfer ability, decreased muscle activation, and increased motor learning motivation. These findings may provide some new insights for multisensory feedback fusion technology in the application of rehabilitation robots.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42190309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and Design of ANFIS Dynamic Sliding Mode Controller for a Knee Orthosis of Hemiplegia","authors":"Belay Eshetu, Dr. Solomon Seid Kebede","doi":"10.1155/2023/9953957","DOIUrl":"https://doi.org/10.1155/2023/9953957","url":null,"abstract":"The use of assistive devices to control the loss of strength and range of motion of hemiplegic patients is becoming common. It is difficult to develop a precise control approach for a knee orthosis system because of the unpredictability of the dynamics and the unwanted subject’s spasm, jerk, and vibration during gait assistance. In this study, an adaptive neuro-fuzzy inference system (ANFIS) control system based on a nonlinear disturbance observer (NDO) and dynamic sliding mode controller (DSMC) is presented to restore the natural gait of hemiplegic patients experiencing mobility disorder and strength loss as well as monitor patient-induced disturbances and parameter variations during semiactive assistance of both the stance and swing phases. The knee orthosis system’s nonlinear dynamic relations are first developed using the Euler–Lagrange formation. Using MATLAB/Simulink, the dynamic model and controller design for the knee orthosis system was created. The Lyapunov theory is then used to ensure the knee orthosis system is asymptotically stable in view of the proposed controller once the proposed control scheme has been designed. The proposed control scheme’s (ANFIS–NDO–DSMC) gait tracking performances are shown and contrasted with the conventional sliding mode controller (SMC). Furthermore, a comparative performance analysis for parametric uncertainties and disturbances is presented to look at the robustness of the proposed controller (ANFIS–NDO–DSMC). The coefficient of determination (\u0000 \u0000 \u0000 R\u0000 \u0000 2\u0000 \u0000 \u0000 \u0000 ) and root mean square error (RMSE) between the reference knee angle and ANFIS–NDO–DSMC for stance phase are 1 and 0.000516 rad, respectively. For swing phase, \u0000 \u0000 \u0000 R\u0000 \u0000 2\u0000 \u0000 \u0000 \u0000 and RMSE are 0.9999 and 0.003202 rad, respectively. For SMC, RMSE is 0.000643 and 0.003252 rad for stance and swing phases, respectively. Stance and swing phase \u0000 \u0000 \u0000 R\u0000 \u0000 2\u0000 \u0000 \u0000 \u0000 is 0.9997 and 0.9994, respectively. As seen from simulation results, the proposed controller exhibited excellent gait tracking performance for the knee orthosis control with high robustness and very fast convergence to a steady state compared to SMC.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41739242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Babuli Sahu, S. K. Swain, S. Mangalampalli, Satyasis Mishra
{"title":"Multiobjective Prioritized Workflow Scheduling in Cloud Computing Using Cuckoo Search Algorithm","authors":"Babuli Sahu, S. K. Swain, S. Mangalampalli, Satyasis Mishra","doi":"10.1155/2023/4350615","DOIUrl":"https://doi.org/10.1155/2023/4350615","url":null,"abstract":"Effective workflow scheduling in cloud computing is still a challenging problem as incoming workflows to cloud console having variable task processing capacities and dependencies as they will arise from various heterogeneous resources. Ineffective scheduling of workflows to virtual resources in cloud environment leads to violations in service level agreements and high energy consumption, which impacts the quality of service of cloud provider. Many existing authors developed workflow scheduling algorithms addressing operational costs and makespan, but still, there is a provision to improve the scheduling process in cloud paradigm as it is an nondeterministic polynomial-hard problem. Therefore, in this research, a task-prioritized multiobjective workflow scheduling algorithm was developed by using cuckoo search algorithm to precisely map incoming workflows onto corresponding virtual resources. Extensive simulations were carried out on workflowsim using randomly generated workflows from simulator. For evaluating the efficacy of our proposed approach, we compared our proposed scheduling algorithm with existing approaches, i.e., Max–Min, first come first serve, minimum completion time, Min–Min, resource allocation security with efficient task scheduling in cloud computing-hybrid machine learning, and Round Robin. Our proposed approach is outperformed by minimizing energy consumption by 15% and reducing service level agreement violations by 22%.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49649992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Zhou, Nan Yu, Song Liu, Linbo Xin, Yuhui Liu, Guowei Gao, Zhonglai Na, X. Hou
{"title":"Inspired by the Black Ghost Knifefish: Bionic Design of Undulatory Fin with 2-DOF Rays and Its Propulsion Performance","authors":"Jie Zhou, Nan Yu, Song Liu, Linbo Xin, Yuhui Liu, Guowei Gao, Zhonglai Na, X. Hou","doi":"10.1155/2023/7831175","DOIUrl":"https://doi.org/10.1155/2023/7831175","url":null,"abstract":"The demand for high-performance underwater thrusters in marine engineering is increasing. The concealed, mobile, and efficient underwater ability of fish provides many directions for research. The black ghost knifefish uses only wavy ventral fins to swim and can hover and roll in the water. Based on the physiological and morphological characteristics of the black ghost knifefish, we explored the structure and movement mode of the ventral fin, so as to establish a two-degree of freedom (2-DOF) structural model and kinematic model. We reveal the motion mechanism of the undulating fin propulsion through the constructed model and computational fluid dynamics. It is found that when the fin surface fluctuates, a pair of vortices with opposite directions will be formed on the concave side of the fin surface. These vortices will produce a central jet on the fin surface, provide a reverse impulse for the ventral fin, and make the fin obtain power. In addition, we found that the propulsive force of the ribbon fin along the body direction is positively correlated with the swing amplitude and frequency of the fin movement, and the propulsive torque of the ribbon fin to realize the maneuvering movement increases first and then decreases with the increase of the torsion angle. The research on the structure and motion mechanism of the ribbon fin of the black ghost knifefish provides a basis for the development of a bionic prototype of multi-DOF motion and the control strategy of high-mobility motion.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45526984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}