Motion Accuracy of Pneumatic Stepper Motor-Driven Robotic System Developed for MRI-Guided High-Intensity Focused Ultrasound Treatment of Prostate Disease

IF 1.8 4区 计算机科学 Q3 ENGINEERING, BIOMEDICAL
Hyunkwan Seo, Sung Kwan Hwang, Hee-Won Kim, Kyu Chan Lee
{"title":"Motion Accuracy of Pneumatic Stepper Motor-Driven Robotic System Developed for MRI-Guided High-Intensity Focused Ultrasound Treatment of Prostate Disease","authors":"Hyunkwan Seo, Sung Kwan Hwang, Hee-Won Kim, Kyu Chan Lee","doi":"10.1155/2024/5556537","DOIUrl":null,"url":null,"abstract":"The latest advancement in high-intensity focused ultrasound (HIFU) treatment technology integrates magnetic resonance imaging (MRI) guidance for precise treatment of prostate disease. As conventional electromagnetic motors are not applicable for utilization within MRI scanners, we have developed a prototype robotic system driven by pneumatic stepper motors to control the movement of the HIFU transducer within an intrarectal probe during MRI-guided HIFU treatment procedures. These pneumatic stepper motors were constructed entirely from MRI-compatible plastic materials. Assessment of the robotic system’s MRI compatibility was conducted utilizing a 3.0T MRI scanner, revealing no discernible MRI image distortion with a minor decrease in the signal-to-noise ratio (2.8%) during the motor operation. The robotic system enabled the transducer to move inside the probe with two degrees of freedom, allowing both linear and rotational motion. The positional accuracy of the transducer movement was assessed, yielding ±0.20 and ±0.22 mm accuracies in the forward and backward linear movements, respectively, and ±0.79° and ±0.74° accuracies in the clockwise and counterclockwise rotational motions, respectively. Emulation of authentic HIFU procedures involved creating a two-dimensional array of thermal lesions in a tissue-mimicking phantom, achieving positional accuracy within ±1 mm for the generated HIFU focal spots. The prototype robotic system incorporating pneumatic stepper motors fabricated entirely from MRI-compatible plastic materials has demonstrated the requisite positional accuracy necessary for effective HIFU treatment of prostate disease, indicating substantial promise for future clinical application.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"254 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/5556537","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The latest advancement in high-intensity focused ultrasound (HIFU) treatment technology integrates magnetic resonance imaging (MRI) guidance for precise treatment of prostate disease. As conventional electromagnetic motors are not applicable for utilization within MRI scanners, we have developed a prototype robotic system driven by pneumatic stepper motors to control the movement of the HIFU transducer within an intrarectal probe during MRI-guided HIFU treatment procedures. These pneumatic stepper motors were constructed entirely from MRI-compatible plastic materials. Assessment of the robotic system’s MRI compatibility was conducted utilizing a 3.0T MRI scanner, revealing no discernible MRI image distortion with a minor decrease in the signal-to-noise ratio (2.8%) during the motor operation. The robotic system enabled the transducer to move inside the probe with two degrees of freedom, allowing both linear and rotational motion. The positional accuracy of the transducer movement was assessed, yielding ±0.20 and ±0.22 mm accuracies in the forward and backward linear movements, respectively, and ±0.79° and ±0.74° accuracies in the clockwise and counterclockwise rotational motions, respectively. Emulation of authentic HIFU procedures involved creating a two-dimensional array of thermal lesions in a tissue-mimicking phantom, achieving positional accuracy within ±1 mm for the generated HIFU focal spots. The prototype robotic system incorporating pneumatic stepper motors fabricated entirely from MRI-compatible plastic materials has demonstrated the requisite positional accuracy necessary for effective HIFU treatment of prostate disease, indicating substantial promise for future clinical application.
为核磁共振成像引导的高强度聚焦超声治疗前列腺疾病而开发的气动步进电机驱动机器人系统的运动精度
高强度聚焦超声(HIFU)治疗技术的最新进展是整合了磁共振成像(MRI)引导,以精确治疗前列腺疾病。由于传统的电磁电机不适用于核磁共振扫描仪,我们开发了一种由气动步进电机驱动的机器人系统原型,用于在核磁共振引导的 HIFU 治疗过程中控制直肠内探头中 HIFU 传感器的移动。这些气动步进电机完全由磁共振成像兼容的塑料材料制成。利用 3.0T 核磁共振成像扫描仪对机器人系统的核磁共振成像兼容性进行了评估,结果显示,在电机运行期间,核磁共振成像图像没有明显失真,信噪比略有下降(2.8%)。机器人系统使传感器能在探头内以两个自由度移动,允许线性和旋转运动。对换能器运动的位置精度进行了评估,结果显示,向前和向后直线运动的精度分别为±0.20毫米和±0.22毫米,顺时针和逆时针旋转运动的精度分别为±0.79°和±0.74°。真实 HIFU 程序的模拟包括在组织模拟模型中创建二维热病灶阵列,生成的 HIFU 病灶位置精度在 ±1 毫米以内。机器人系统原型采用气动步进电机,完全由核磁共振成像兼容的塑料材料制造而成,已显示出有效治疗前列腺疾病所需的定位精度,为未来的临床应用带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Bionics and Biomechanics
Applied Bionics and Biomechanics ENGINEERING, BIOMEDICAL-ROBOTICS
自引率
4.50%
发文量
338
审稿时长
>12 weeks
期刊介绍: Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信