SHAKF-PU:基于 Sage-Husa 自适应卡尔曼滤波的行人特征参数更新机制,用于增强行人惯性推算中的步长估计。

IF 1.8 4区 计算机科学 Q3 ENGINEERING, BIOMEDICAL
Applied Bionics and Biomechanics Pub Date : 2024-02-08 eCollection Date: 2024-01-01 DOI:10.1155/2024/1150076
Chinyang Henry Tseng, Jiunn-Yih Wu
{"title":"SHAKF-PU:基于 Sage-Husa 自适应卡尔曼滤波的行人特征参数更新机制,用于增强行人惯性推算中的步长估计。","authors":"Chinyang Henry Tseng, Jiunn-Yih Wu","doi":"10.1155/2024/1150076","DOIUrl":null,"url":null,"abstract":"<p><p>Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sage-Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP estimation is required. Compared with the classical Kalman filter, SHAKF updates its <i>Q</i> and <i>R</i> parameters in each update period so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2024 ","pages":"1150076"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869188/pdf/","citationCount":"0","resultStr":"{\"title\":\"SHAKF-PU: Sage-Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning.\",\"authors\":\"Chinyang Henry Tseng, Jiunn-Yih Wu\",\"doi\":\"10.1155/2024/1150076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sage-Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP estimation is required. Compared with the classical Kalman filter, SHAKF updates its <i>Q</i> and <i>R</i> parameters in each update period so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR.</p>\",\"PeriodicalId\":8029,\"journal\":{\"name\":\"Applied Bionics and Biomechanics\",\"volume\":\"2024 \",\"pages\":\"1150076\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Bionics and Biomechanics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1150076\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/1150076","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

步长估计(SLE)是室内定位行人惯性推算(PDR)的核心过程。原始 SLE 需要通过线性更新来准确估计行人特征参数(PCP),这可能会导致较大的距离误差。为了增强 SLE,本文提出了基于 Sage-Husa 自适应卡尔曼滤波的 PCP 更新(SHAKF-PU)机制,以增强 PDR 中的 SLE。SHAKF 具有预测历史数据趋势的特点,与线性更新相比,估计的 PCP 更接近真实值。由于不同类型的行人会影响 PCP 估计,因此需要自适应 PCP 估计。与经典卡尔曼滤波器相比,SHAKF 在每个更新周期都会更新 Q 和 R 参数,因此估计的 PCP 比其他现有方法更准确。实验结果表明,与线性更新相比,SHAKF-PU 的误差减少了 24.86%,因此,SHAKF-PU 提高了 PDR 的室内定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SHAKF-PU: Sage-Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning.

Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sage-Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP estimation is required. Compared with the classical Kalman filter, SHAKF updates its Q and R parameters in each update period so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Bionics and Biomechanics
Applied Bionics and Biomechanics ENGINEERING, BIOMEDICAL-ROBOTICS
自引率
4.50%
发文量
338
审稿时长
>12 weeks
期刊介绍: Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信