{"title":"Cholesterol Metabolism in Aging and Age-Related Disorders.","authors":"Gesine Saher","doi":"10.1146/annurev-neuro-091922-034237","DOIUrl":"https://doi.org/10.1146/annurev-neuro-091922-034237","url":null,"abstract":"<p><p>All mammalian cell membranes contain cholesterol to maintain membrane integrity. The transport of this hydrophobic lipid is mediated by lipoproteins. Cholesterol is especially enriched in the brain, particularly in synaptic and myelin membranes. Aging involves changes in sterol metabolism in peripheral organs and also in the brain. Some of those alterations have the potential to promote or to counteract the development of neurodegenerative diseases during aging. Here, we summarize the current knowledge of general principles of sterol metabolism in humans and mice, the most widely used model organism in biomedical research. We discuss changes in sterol metabolism that occur in the aged brain and highlight recent developments in cell type-specific cholesterol metabolism in the fast-growing research field of aging and age-related diseases, focusing on Alzheimer's disease. We propose that cell type-specific cholesterol handling and the interplay between cell types critically influence age-related disease processes.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"46 ","pages":"59-78"},"PeriodicalIF":13.9,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9867291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Instructions, Learning, and Expectations Shape Pain and Neurobiological Responses.","authors":"Lauren Y Atlas","doi":"10.1146/annurev-neuro-101822-122427","DOIUrl":"https://doi.org/10.1146/annurev-neuro-101822-122427","url":null,"abstract":"<p><p>Treatment outcomes are strongly influenced by expectations, as evidenced by the placebo effect. Meta-analyses of clinical trials reveal that placebo effects are strongest in pain, indicating that psychosocial factors directly influence pain. In this review, I focus on the neural and psychological mechanisms by which instructions, learning, and expectations shape subjective pain. I address new experimental designs that help researchers tease apart the impact of these distinct processes and evaluate the evidence regarding the neural mechanisms by which these cognitive factors shape subjective pain. Studies reveal that expectations modulate pain through parallel circuits that include both pain-specific and domain-general circuits such as those involved in affect and learning. I then review how expectations, learning, and verbal instructions impact clinical outcomes, including placebo analgesia and responses to pharmacological treatments, and discuss implications for future work.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"46 ","pages":"167-189"},"PeriodicalIF":13.9,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10146991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spinal Interneurons: Diversity and Connectivity in Motor Control.","authors":"Mohini Sengupta, Martha W Bagnall","doi":"10.1146/annurev-neuro-083122-025325","DOIUrl":"10.1146/annurev-neuro-083122-025325","url":null,"abstract":"<p><p>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"46 ","pages":"79-99"},"PeriodicalIF":12.1,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10146438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunyang Dong, Yu Zheng, Kiran Long-Iyer, Emily C Wright, Yulong Li, Lin Tian
{"title":"Fluorescence Imaging of Neural Activity, Neurochemical Dynamics, and Drug-Specific Receptor Conformation with Genetically Encoded Sensors.","authors":"Chunyang Dong, Yu Zheng, Kiran Long-Iyer, Emily C Wright, Yulong Li, Lin Tian","doi":"10.1146/annurev-neuro-110520-031137","DOIUrl":"10.1146/annurev-neuro-110520-031137","url":null,"abstract":"<p><p>Recent advances in fluorescence imaging permit large-scale recording of neural activity and dynamics of neurochemical release with unprecedented resolution in behaving animals. Calcium imaging with highly optimized genetically encoded indicators provides a mesoscopic view of neural activity from genetically defined populations at cellular and subcellular resolutions. Rigorously improved voltage sensors and microscopy allow for robust spike imaging of populational neurons in various brain regions. In addition, recent protein engineering efforts in the past few years have led to the development of sensors for neurotransmitters and neuromodulators. Here, we discuss the development and applications of these genetically encoded fluorescent indicators in reporting neural activity in response to various behaviors in different biological systems as well as in drug discovery. We also report a simple model to guide sensor selection and optimization.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"273-294"},"PeriodicalIF":12.1,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940643/pdf/nihms-1874004.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10740843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Cerebellar Cortex.","authors":"Court Hull, Wade G Regehr","doi":"10.1146/annurev-neuro-091421-125115","DOIUrl":"https://doi.org/10.1146/annurev-neuro-091421-125115","url":null,"abstract":"<p><p>The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"151-175"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268027/pdf/nihms-1907068.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9817513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neural Signaling in Cancer.","authors":"Michael B Keough, Michelle Monje","doi":"10.1146/annurev-neuro-111020-092702","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-092702","url":null,"abstract":"<p><p>Nervous system activity regulates development, homeostasis, and plasticity of the brain as well as other organs in the body. These mechanisms are subverted in cancer to propel malignant growth. In turn, cancers modulate neural structure and function to augment growth-promoting neural signaling in the tumor microenvironment. Approaching cancer biology from a neuroscience perspective will elucidate new therapeutic strategies for presently lethal forms of cancer. In this review, we highlight the neural signaling mechanisms recapitulated in primary brain tumors, brain metastases, and solid tumors throughout the body that regulate cancer progression.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"199-221"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234771/pdf/nihms-1900752.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9935036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gregg A Castellucci, Frank H Guenther, Michael A Long
{"title":"A Theoretical Framework for Human and Nonhuman Vocal Interaction.","authors":"Gregg A Castellucci, Frank H Guenther, Michael A Long","doi":"10.1146/annurev-neuro-111020-094807","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-094807","url":null,"abstract":"<p><p>Vocal communication is a critical feature of social interaction across species; however, the relation between such behavior in humans and nonhumans remains unclear. To enable comparative investigation of this topic, we review the literature pertinent to interactive language use and identify the superset of cognitive operations involved in generating communicative action. We posit these functions comprise three intersecting multistep pathways: (<i>a</i>) the Content Pathway, which selects the movements constituting a response; (<i>b</i>) the Timing Pathway, which temporally structures responses; and (<i>c</i>) the Affect Pathway, which modulates response parameters according to internal state. These processing streams form the basis of the Convergent Pathways for Interaction framework, which provides a conceptual model for investigating the cognitive and neural computations underlying vocal communication across species.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"295-316"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909589/pdf/nihms-1868272.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10671054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parthiv Haldipur, Kathleen J Millen, Kimberly A Aldinger
{"title":"Human Cerebellar Development and Transcriptomics: Implications for Neurodevelopmental Disorders.","authors":"Parthiv Haldipur, Kathleen J Millen, Kimberly A Aldinger","doi":"10.1146/annurev-neuro-111020-091953","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-091953","url":null,"abstract":"<p><p>Developmental abnormalities of the cerebellum are among the most recognized structural brain malformations in human prenatal imaging. Yet reliable information regarding their cause in humans is sparse, and few outcome studies are available to inform prognosis. We know very little about human cerebellar development, in stark contrast to the wealth of knowledge from decades of research on cerebellar developmental biology of model organisms, especially mice. Recent studies show that multiple aspects of human cerebellar development significantly differ from mice and even rhesus macaques, a nonhuman primate. These discoveries challenge many current mouse-centric models of normal human cerebellar development and models regarding the pathogenesis of several neurodevelopmental phenotypes affecting the cerebellum, including Dandy-Walker malformation and medulloblastoma. Since we cannot model what we do not know, additional normative and pathological human developmental data are essential, and new models are needed.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"515-531"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271632/pdf/nihms-1810619.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9758288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sufyan Ashhad, Kaiwen Kam, Christopher A Del Negro, Jack L Feldman
{"title":"Breathing Rhythm and Pattern and Their Influence on Emotion.","authors":"Sufyan Ashhad, Kaiwen Kam, Christopher A Del Negro, Jack L Feldman","doi":"10.1146/annurev-neuro-090121-014424","DOIUrl":"10.1146/annurev-neuro-090121-014424","url":null,"abstract":"<p><p>Breathing is a vital rhythmic motor behavior with a surprisingly broad influence on the brain and body. The apparent simplicity of breathing belies a complex neural control system, the breathing central pattern generator (bCPG), that exhibits diverse operational modes to regulate gas exchange and coordinate breathing with an array of behaviors. In this review, we focus on selected advances in our understanding of the bCPG. At the core of the bCPG is the preBötzinger complex (preBötC), which drives inspiratory rhythm via an unexpectedly sophisticated emergent mechanism. Synchronization dynamics underlying preBötC rhythmogenesis imbue the system with robustness and lability. These dynamics are modulated by inputs from throughout the brain and generate rhythmic, patterned activity that is widely distributed. The connectivity and an emerging literature support a link between breathing, emotion, and cognition that is becoming experimentally tractable. These advances bring great potential for elucidating function and dysfunction in breathing and other mammalian neural circuits.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"223-247"},"PeriodicalIF":12.1,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840384/pdf/nihms-1849892.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9186217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hidehiko K Inagaki, Susu Chen, Kayvon Daie, Arseny Finkelstein, Lorenzo Fontolan, Sandro Romani, Karel Svoboda
{"title":"Neural Algorithms and Circuits for Motor Planning.","authors":"Hidehiko K Inagaki, Susu Chen, Kayvon Daie, Arseny Finkelstein, Lorenzo Fontolan, Sandro Romani, Karel Svoboda","doi":"10.1146/annurev-neuro-092021-121730","DOIUrl":"https://doi.org/10.1146/annurev-neuro-092021-121730","url":null,"abstract":"The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"249-271"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10784686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}