导航神经网络:从连接到计算。

IF 12.1 1区 医学 Q1 NEUROSCIENCES
Rachel I Wilson
{"title":"导航神经网络:从连接到计算。","authors":"Rachel I Wilson","doi":"10.1146/annurev-neuro-110920-032645","DOIUrl":null,"url":null,"abstract":"<p><p>Many animals can navigate toward a goal they cannot see based on an internal representation of that goal in the brain's spatial maps. These maps are organized around networks with stable fixed-point dynamics (attractors), anchored to landmarks, and reciprocally connected to motor control. This review summarizes recent progress in understanding these networks, focusing on studies in arthropods. One factor driving recent progress is the availability of the <i>Drosophila</i> connectome; however, it is increasingly clear that navigation depends on ongoing synaptic plasticity in these networks. Functional synapses appear to be continually reselected from the set of anatomical potential synapses based on the interaction of Hebbian learning rules, sensory feedback, attractor dynamics, and neuromodulation. This can explain how the brain's maps of space are rapidly updated; it may also explain how the brain can initialize goals as stable fixed points for navigation.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"46 ","pages":"403-423"},"PeriodicalIF":12.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neural Networks for Navigation: From Connections to Computations.\",\"authors\":\"Rachel I Wilson\",\"doi\":\"10.1146/annurev-neuro-110920-032645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many animals can navigate toward a goal they cannot see based on an internal representation of that goal in the brain's spatial maps. These maps are organized around networks with stable fixed-point dynamics (attractors), anchored to landmarks, and reciprocally connected to motor control. This review summarizes recent progress in understanding these networks, focusing on studies in arthropods. One factor driving recent progress is the availability of the <i>Drosophila</i> connectome; however, it is increasingly clear that navigation depends on ongoing synaptic plasticity in these networks. Functional synapses appear to be continually reselected from the set of anatomical potential synapses based on the interaction of Hebbian learning rules, sensory feedback, attractor dynamics, and neuromodulation. This can explain how the brain's maps of space are rapidly updated; it may also explain how the brain can initialize goals as stable fixed points for navigation.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\"46 \",\"pages\":\"403-423\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-110920-032645\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-110920-032645","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

许多动物可以根据大脑空间地图中目标的内部表征,导航到它们看不见的目标。这些地图围绕具有稳定的定点动力学(吸引子)的网络组织,锚定在地标上,并相互连接到电机控制。本文综述了近年来对这些网络的研究进展,重点介绍了节肢动物的研究。推动最近进展的一个因素是果蝇连接体的可用性;然而,越来越清楚的是,导航依赖于这些网络中正在进行的突触可塑性。基于Hebbian学习规则、感觉反馈、吸引子动力学和神经调节的相互作用,功能性突触似乎不断地从解剖学电位突触中被重新选择。这可以解释大脑的空间地图是如何快速更新的;这也可以解释大脑如何将目标初始化为导航的稳定固定点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Networks for Navigation: From Connections to Computations.

Many animals can navigate toward a goal they cannot see based on an internal representation of that goal in the brain's spatial maps. These maps are organized around networks with stable fixed-point dynamics (attractors), anchored to landmarks, and reciprocally connected to motor control. This review summarizes recent progress in understanding these networks, focusing on studies in arthropods. One factor driving recent progress is the availability of the Drosophila connectome; however, it is increasingly clear that navigation depends on ongoing synaptic plasticity in these networks. Functional synapses appear to be continually reselected from the set of anatomical potential synapses based on the interaction of Hebbian learning rules, sensory feedback, attractor dynamics, and neuromodulation. This can explain how the brain's maps of space are rapidly updated; it may also explain how the brain can initialize goals as stable fixed points for navigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信