The Protein Journal最新文献

筛选
英文 中文
Mechanism of Peptide Self-assembly and Its Study in Biomedicine 多肽自组装机制及其在生物医学中的研究
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-27 DOI: 10.1007/s10930-024-10200-5
Xinyue Yang, Li Ma, Kui Lu, Dongxin Zhao
{"title":"Mechanism of Peptide Self-assembly and Its Study in Biomedicine","authors":"Xinyue Yang,&nbsp;Li Ma,&nbsp;Kui Lu,&nbsp;Dongxin Zhao","doi":"10.1007/s10930-024-10200-5","DOIUrl":"10.1007/s10930-024-10200-5","url":null,"abstract":"<div><p>The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"464 - 476"},"PeriodicalIF":1.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the Structure–Function Relationship of the Muramidase Domain in E. coli O157.H7 Bacteriophage Endolysin: A Potential Building Block for Chimeric Enzybiotics 解码大肠杆菌 O157.H7 噬菌体内溶解素中酪氨酸酶结构域的结构-功能关系:嵌合型 Enzybiotics 的潜在构件。
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-25 DOI: 10.1007/s10930-024-10195-z
Mehri Javid, Ahmad Reza Shahverdi, Atiyeh Ghasemi, Ali Akbar Moosavi-Movahedi, Azadeh Ebrahim-Habibi, Zargham Sepehrizadeh
{"title":"Decoding the Structure–Function Relationship of the Muramidase Domain in E. coli O157.H7 Bacteriophage Endolysin: A Potential Building Block for Chimeric Enzybiotics","authors":"Mehri Javid,&nbsp;Ahmad Reza Shahverdi,&nbsp;Atiyeh Ghasemi,&nbsp;Ali Akbar Moosavi-Movahedi,&nbsp;Azadeh Ebrahim-Habibi,&nbsp;Zargham Sepehrizadeh","doi":"10.1007/s10930-024-10195-z","DOIUrl":"10.1007/s10930-024-10195-z","url":null,"abstract":"<div><p>Bacteriophage endolysins are potential alternatives to conventional antibiotics for treating multidrug-resistant gram-negative bacterial infections. However, their structure–function relationships are poorly understood, hindering their optimization and application. In this study, we focused on the individual functionality of the C-terminal muramidase domain of Gp127, a modular endolysin from <i>E. coli</i> O157:H7 bacteriophage PhaxI. This domain is responsible for the enzymatic activity, whereas the N-terminal domain binds to the bacterial cell wall. Through protein modeling, docking experiments, and molecular dynamics simulations, we investigated the activity, stability, and interactions of the isolated C-terminal domain with its ligand. We also assessed its expression, solubility, toxicity, and lytic activity using the experimental data. Our results revealed that the C-terminal domain exhibits high activity and toxicity when tested individually, and its expression is regulated in different hosts to prevent self-destruction. Furthermore, we validated the muralytic activity of the purified refolded protein by zymography and standardized assays. These findings challenge the need for the N-terminal binding domain to arrange the active site and adjust the gap between crucial residues for peptidoglycan cleavage. Our study shed light on the three-dimensional structure and functionality of muramidase endolysins, thereby enriching the existing knowledge pool and laying a foundation for accurate in <i>silico</i> modeling and the informed design of next-generation enzybiotic treatments.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"522 - 543"},"PeriodicalIF":1.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis 用分子建模方法发现 PPAR-γ 和 α-葡萄糖苷酶双靶点新药:分子对接、分子动力学模拟和 MM/PBSA 分析
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-20 DOI: 10.1007/s10930-024-10196-y
Süleyman Kaya, Gizem Tatar-Yılmaz, Bedriye Seda Kurşun Aktar, Emine Elçin Oruç Emre
{"title":"Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis","authors":"Süleyman Kaya,&nbsp;Gizem Tatar-Yılmaz,&nbsp;Bedriye Seda Kurşun Aktar,&nbsp;Emine Elçin Oruç Emre","doi":"10.1007/s10930-024-10196-y","DOIUrl":"10.1007/s10930-024-10196-y","url":null,"abstract":"<div><p>Type 2 diabetes mellitus (T2DM) has become a serious public health problem both in our country and worldwide, being the most prevalent type of diabetes. The combined use of drugs in the treatment of T2DM leads to serious side effects, including gastrointestinal problems, liver toxicity, hypoglycemia, and treatment costs. Hence, there has been a growing emphasis on drugs that demonstrate dual interactions. Several studies have suggested that dual-target agents for peroxisome proliferator-activated receptor-γ (PPAR-γ) and alpha-glucosidase (α-glucosidase) could be a potent approach for treating patients with diabetes. We aim to develop new antidiabetic agents that target PPAR-γ and α-glucosidase enzymes using molecular modeling techniques. These compounds show dual interactions, are more effective, and have fewer side effects. The molecular docking method was employed to investigate the enzyme-ligand interaction mechanisms of 159 newly designed compounds with target enzymes. Additionally, we evaluated the ADME properties and pharmacokinetic suitability of these compounds based on Lipinski and Veber’s rules. Compound 70, which exhibited favorable ADME properties, demonstrated more effective binding energy with both PPAR-γ and α-glucosidase enzymes (-12,16 kcal/mol, -10.07 kcal/mol) compared to the reference compounds of Acetohexamide (-9.31 kcal/mol, -7.48 kcal/mol) and Glibenclamide (-11.12 kcal/mol, -8.66 kcal/mol). Further, analyses of MM/PBSA binding free energy and molecular dynamics (MD) simulations were conducted for target enzymes with compound 70, which exhibited the most favorable binding affinities with both enzymes. Based on this information, our study aims to contribute to the development of new dual-target antidiabetic agents with improved efficacy, reduced side effects, and enhanced reliability for diabetes treatment.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"577 - 591"},"PeriodicalIF":1.9,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Proteostasis of Thymic Stromal Cells in Health and Diseases 健康和疾病中胸腺基质细胞的蛋白稳态
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-16 DOI: 10.1007/s10930-024-10197-x
Ting Liu, Sheng Xia
{"title":"The Proteostasis of Thymic Stromal Cells in Health and Diseases","authors":"Ting Liu,&nbsp;Sheng Xia","doi":"10.1007/s10930-024-10197-x","DOIUrl":"10.1007/s10930-024-10197-x","url":null,"abstract":"<div><p>The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"447 - 463"},"PeriodicalIF":1.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Analyses of Vertebrate G-Protein-Coupled Receptor Fusions United With or Without an Additional Transmembrane Sequence Indicate Classification into Three Groups of Linkers 对脊椎动物 G 蛋白偶联受体融合体进行的硅学分析表明,无论融合体是否具有额外的跨膜序列,都可将其分为三类连接体
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-14 DOI: 10.1007/s10930-024-10184-2
Toshio Kamiya, Takashi Masuko, Dasiel Oscar Borroto-Escuela, Haruo Okado, Hiroyasu Nakata
{"title":"In Silico Analyses of Vertebrate G-Protein-Coupled Receptor Fusions United With or Without an Additional Transmembrane Sequence Indicate Classification into Three Groups of Linkers","authors":"Toshio Kamiya,&nbsp;Takashi Masuko,&nbsp;Dasiel Oscar Borroto-Escuela,&nbsp;Haruo Okado,&nbsp;Hiroyasu Nakata","doi":"10.1007/s10930-024-10184-2","DOIUrl":"10.1007/s10930-024-10184-2","url":null,"abstract":"<div><p>Natural G-protein-coupled receptors (GPCRs) rarely have an additional transmembrane (TM) helix, such as an artificial TM-linker that can unite two class A GPCRs in tandem as a single-polypeptide chain (sc). Here, we report that three groups of TM-linkers exist in the intervening regions of natural GPCR fusions from vertebrates: (1) the original consensus (i.e., consensus 1) and consensus 2~4 (related to GPCR itself or its receptor-interacting proteins); (2) the consensus but GPCR-unrelated ones, 1~7; and (3) the inability to apply 1/2 that show no similarity to any other proteins. In silico analyses indicated that all natural GPCR fusions from Amphibia lack a TM-linker, and reptiles have no GPCR fusions; moreover, in either the GPCR-GPCR fusion or fusion protein of (GPCR monomer) and non-GPCR proteins from vertebrates, excluding tetrapods, i.e., so-called fishes, TM-linkers differ from previously reported mammalian and are avian sequences and are classified as Groups 2 and 3. Thus, previously reported TM-linkers were arranged: Consensus 1 is [T(I/A/P)(A/S)–(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)] first identified in invertebrate sea anemone <i>Exaiptasia diaphana</i> (LOC110241027) and (330-SPSFLCI–L–SLL-340) identified in a tropical bird <i>Opisthocomus hoazin</i> protein LOC104327099 (XP_009930279.1); GPCR-related consensus 2~4 are, respectively, (371-prlilyavfc fgtatg-386) in the desert woodrat <i>Neotoma lepida</i> A6R68_19462 (OBS78147.1), (363-lsipfcll yiaallgnfi llfvi-385) in <i>Gavia stellate</i> (red-throated loon) LOC104264164 (XP_009819412.1), and (479-ti vvvymivcvi glvgnflvmy viir-504) in a snailfish GPCR (TNN80062.1); In Mammals <i>Neotoma lepida</i>, Aves <i>Erythrura gouldiae</i>, and fishes protein (respectively, OBS83645.1, RLW13346.1 and KPP79779.1), the TM-linkers are Group 2. Here, we categorized, for the first time, natural TM-linkers as rare evolutionary events among all vertebrates.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"225 - 242"},"PeriodicalIF":1.9,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties 与葡萄糖结合的双色 Dioclea Lectin (DBL):纯化、表征、结构分析和抗菌特性
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-14 DOI: 10.1007/s10930-024-10199-9
Willian F. Reis, Marcos E. S. Silva, Ana C. S. Gondim, Renato C. F. Torres, Rômulo F. Carneiro, Celso S. Nagano, Alexandre H. Sampaio, Claudener S. Teixeira, Lenita C. B. F. Gomes, Bruno L. Sousa, Alexandre L. Andrade, Edson H. Teixeira, Mayron A. Vasconcelos
{"title":"Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties","authors":"Willian F. Reis,&nbsp;Marcos E. S. Silva,&nbsp;Ana C. S. Gondim,&nbsp;Renato C. F. Torres,&nbsp;Rômulo F. Carneiro,&nbsp;Celso S. Nagano,&nbsp;Alexandre H. Sampaio,&nbsp;Claudener S. Teixeira,&nbsp;Lenita C. B. F. Gomes,&nbsp;Bruno L. Sousa,&nbsp;Alexandre L. Andrade,&nbsp;Edson H. Teixeira,&nbsp;Mayron A. Vasconcelos","doi":"10.1007/s10930-024-10199-9","DOIUrl":"10.1007/s10930-024-10199-9","url":null,"abstract":"<div><p>In this study, we purified a lectin isolated from the seeds of <i>Dioclea bicolor</i> (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56–50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other <i>Diocleinae</i> lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of –26,642.69141/Normalized DOPE score of –1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (<i>p</i> &lt; 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"559 - 576"},"PeriodicalIF":1.9,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141 死前应激通过丙酮酸激酶 M1 K141 的去乙酰化调节肌肉的死后糖酵解
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-11 DOI: 10.1007/s10930-023-10178-6
Shengwang Jiang, Qingwu W. Shen
{"title":"Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141","authors":"Shengwang Jiang,&nbsp;Qingwu W. Shen","doi":"10.1007/s10930-023-10178-6","DOIUrl":"10.1007/s10930-023-10178-6","url":null,"abstract":"<div><p>It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C<sub>2</sub>C<sub>12</sub> treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"351 - 361"},"PeriodicalIF":1.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Investigation of the Subtle Structural Discrepancies between Oryza Sativa Recombinant and Plasma-Derived Human Serum Albumins to Design a Novel Nanoparticle as a Taxane Delivery System 研究重组人血清白蛋白与血浆衍生人血清白蛋白之间的微妙结构差异,设计一种新型纳米颗粒作为紫杉类药物递送系统
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-04-06 DOI: 10.1007/s10930-024-10194-0
Ru Fang, Liang He, Yanbin Wang, Liling Wang, Hua Qian, Shaozong Yang
{"title":"The Investigation of the Subtle Structural Discrepancies between Oryza Sativa Recombinant and Plasma-Derived Human Serum Albumins to Design a Novel Nanoparticle as a Taxane Delivery System","authors":"Ru Fang,&nbsp;Liang He,&nbsp;Yanbin Wang,&nbsp;Liling Wang,&nbsp;Hua Qian,&nbsp;Shaozong Yang","doi":"10.1007/s10930-024-10194-0","DOIUrl":"10.1007/s10930-024-10194-0","url":null,"abstract":"<div><p>To solve the large size faultiness of <i>Oryza sativa</i> recombinant human serum albumin nanoparticle (OsrHSA NP), the structural discrepancies between OsrHSA and plasma-derived human serum albumin (pdHSA) were analyzed deeply in this research. It demonstrated that there were some subtle structural discrepancies located in subdomain IA and IIA between OsrHSA and pdHSA, which included peptide backbone, disulphide bridge and some amino acids. Firstly, the structural discrepancies were investigated through literature comparison, it inferred that the structural discrepancies resulted from the fatty acid (FA) binding to OsrHSA at site 2 of subdomain IA and IIA. To form a cavity for accommodation of FA molecule in OsrHSA, the peptide backbone structure of subdomain IA and IIA would change, accompanied by the conformational transition of disulphide bridges and side chain structure change of some amino acids in subdomain IA and IIA. These alterations induced the exposure of tryptophan (Trp) and tyrosine (Tyr) residues in subdomain IA and IIA and the decrease of net negative charges of molecular surface. The former would promote more OsrHSA molecules aggregate, and the latter would weaken the electrostatic repulsion. As a result, the size of OsrHSA NP was more extensive than that of pdHSA NP (175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm) when the concentration of Dimethyl Sulphoxide (DMSO) was 30% (v/v). In this study, the experimental scheme of OsrHSA NP preparation was improved. There were two changes in the enhanced preparation scheme: pH 8.2 PBS buffer and 63% DMSO. It indicated that the improved OsrHSA NP carrier was comparable to the pdHSA NP carrier. The size and drug loading of paclitaxel-loaded improved OsrHSA NP were 53.57 ± 3.63 nm and 7.25 ± 0.46% (w/w), and those of docetaxel-loaded improved OsrHSA NP were 44.75 ± 2.26 nm and 8.43 ± 0.74% (w/w). Moreover, both NPs exhibited good stability for 168 h at 7.4 pH values. It is established that the improved OsrHSA NP is comparable to the pdHSA NP as a taxane delivery system.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"544 - 558"},"PeriodicalIF":1.9,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microenzymes: Is There Anybody Out There? 微酶:有人在那里吗?
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-03-20 DOI: 10.1007/s10930-024-10193-1
Jose Carlos Santos Salgado, Robson Carlos Alnoch, Maria de Lourdes Teixeira de Moraes Polizeli, Richard John Ward
{"title":"Microenzymes: Is There Anybody Out There?","authors":"Jose Carlos Santos Salgado,&nbsp;Robson Carlos Alnoch,&nbsp;Maria de Lourdes Teixeira de Moraes Polizeli,&nbsp;Richard John Ward","doi":"10.1007/s10930-024-10193-1","DOIUrl":"10.1007/s10930-024-10193-1","url":null,"abstract":"<div><p>Biological macromolecules are found in different shapes and sizes. Among these, enzymes catalyze biochemical reactions and are essential in all organisms, but is there a limit size for them to function properly? Large enzymes such as catalases have hundreds of kDa and are formed by multiple subunits, whereas most enzymes are smaller, with molecular weights of 20–60 kDa. Enzymes smaller than 10 kDa could be called microenzymes and the present literature review brings together evidence of their occurrence in nature. Additionally, bioactive peptides could be a natural source for novel microenzymes hidden in larger peptides and molecular downsizing could be useful to engineer artificial enzymes with low molecular weight improving their stability and heterologous expression. An integrative approach is crucial to discover and determine the amino acid sequences of novel microenzymes, together with their genomic identification and their biochemical biological and evolutionary functions.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"393 - 404"},"PeriodicalIF":1.9,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human 甘油磷酸二酯磷酸二酯酶的最新进展;从细菌到人类。
IF 1.9 4区 生物学
The Protein Journal Pub Date : 2024-03-16 DOI: 10.1007/s10930-024-10190-4
Seyyedeh Mina Hejazian, Saeed Pirmoradi, Sepideh Zununi Vahed, Ripon Kumar Roy, Seyed Mahdi Hosseiniyan Khatibi
{"title":"An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human","authors":"Seyyedeh Mina Hejazian,&nbsp;Saeed Pirmoradi,&nbsp;Sepideh Zununi Vahed,&nbsp;Ripon Kumar Roy,&nbsp;Seyed Mahdi Hosseiniyan Khatibi","doi":"10.1007/s10930-024-10190-4","DOIUrl":"10.1007/s10930-024-10190-4","url":null,"abstract":"<div><p>The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"187 - 199"},"PeriodicalIF":1.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140141339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信