Bikramjit Bhattacharya, Shreshtha Bhattacharya, Srinjana Khatun, Namitha A. Bhaktham, M. Maneesha, C. Subathra Devi
{"title":"黄蜂毒液:抗菌肽生产的未来突破。","authors":"Bikramjit Bhattacharya, Shreshtha Bhattacharya, Srinjana Khatun, Namitha A. Bhaktham, M. Maneesha, C. Subathra Devi","doi":"10.1007/s10930-024-10242-9","DOIUrl":null,"url":null,"abstract":"<p>The emergence of multi-drug-resistant pathogens and the decrease in the discovery of newer antibiotics have led to a quest for novel alternatives. Recently, wasp venom has spiked interest due to the presence of various active compounds, showcasing a diverse range of therapeutic effects. Wasps are creatures of the Hymenoptera order, and their venom chemically comprises antimicrobial peptides such as Anoplin, Mastoparan, Polybia-CP, Polydim-I, and Polybia MP1 that play a significant role in the biological effects of the venom. AMPs belong to the family of cationic peptides with α-helical structure, which exhibits a diversity of structural motifs and are crucial for innate immunity and defence in these creatures. These peptides demonstrate not only antimicrobial properties but also a wide range of other biological activities like anti-biofilm and anti-inflammatory, linked to their varying capacity to interact with biological membranes. Although wasp venom has the potential to be a cutting-edge natural source for the creation of new drugs, its usage is still restricted due to its availability and the lack of sophisticated methods for synthesizing its therapeutic components. Therefore, this review article provides insights about the therapeutic use of the wasp venom peptides against the antimicrobial-resistant pathogens, as well as its constraints and opportunities for future pharmacological development.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"44 1","pages":"35 - 47"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wasp Venom: Future Breakthrough in Production of Antimicrobial Peptides\",\"authors\":\"Bikramjit Bhattacharya, Shreshtha Bhattacharya, Srinjana Khatun, Namitha A. Bhaktham, M. Maneesha, C. Subathra Devi\",\"doi\":\"10.1007/s10930-024-10242-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emergence of multi-drug-resistant pathogens and the decrease in the discovery of newer antibiotics have led to a quest for novel alternatives. Recently, wasp venom has spiked interest due to the presence of various active compounds, showcasing a diverse range of therapeutic effects. Wasps are creatures of the Hymenoptera order, and their venom chemically comprises antimicrobial peptides such as Anoplin, Mastoparan, Polybia-CP, Polydim-I, and Polybia MP1 that play a significant role in the biological effects of the venom. AMPs belong to the family of cationic peptides with α-helical structure, which exhibits a diversity of structural motifs and are crucial for innate immunity and defence in these creatures. These peptides demonstrate not only antimicrobial properties but also a wide range of other biological activities like anti-biofilm and anti-inflammatory, linked to their varying capacity to interact with biological membranes. Although wasp venom has the potential to be a cutting-edge natural source for the creation of new drugs, its usage is still restricted due to its availability and the lack of sophisticated methods for synthesizing its therapeutic components. Therefore, this review article provides insights about the therapeutic use of the wasp venom peptides against the antimicrobial-resistant pathogens, as well as its constraints and opportunities for future pharmacological development.</p>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":\"44 1\",\"pages\":\"35 - 47\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-024-10242-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10242-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Wasp Venom: Future Breakthrough in Production of Antimicrobial Peptides
The emergence of multi-drug-resistant pathogens and the decrease in the discovery of newer antibiotics have led to a quest for novel alternatives. Recently, wasp venom has spiked interest due to the presence of various active compounds, showcasing a diverse range of therapeutic effects. Wasps are creatures of the Hymenoptera order, and their venom chemically comprises antimicrobial peptides such as Anoplin, Mastoparan, Polybia-CP, Polydim-I, and Polybia MP1 that play a significant role in the biological effects of the venom. AMPs belong to the family of cationic peptides with α-helical structure, which exhibits a diversity of structural motifs and are crucial for innate immunity and defence in these creatures. These peptides demonstrate not only antimicrobial properties but also a wide range of other biological activities like anti-biofilm and anti-inflammatory, linked to their varying capacity to interact with biological membranes. Although wasp venom has the potential to be a cutting-edge natural source for the creation of new drugs, its usage is still restricted due to its availability and the lack of sophisticated methods for synthesizing its therapeutic components. Therefore, this review article provides insights about the therapeutic use of the wasp venom peptides against the antimicrobial-resistant pathogens, as well as its constraints and opportunities for future pharmacological development.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.