Exploring Acoustic Detection of α-Synuclein Fibrils.

M Brun-Cosme-Bruny, L Gerfault, V Mourier, N Torres, P Bleuet
{"title":"Exploring Acoustic Detection of α-Synuclein Fibrils.","authors":"M Brun-Cosme-Bruny, L Gerfault, V Mourier, N Torres, P Bleuet","doi":"10.1007/s10930-024-10241-w","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decades, the incidence of Parkinson's disease (PD) cases has doubled in industrialized countries. While patients over 70 years old still represent more than half of the cases, the disease is increasingly affecting younger individuals. Environmental factors have been implicated, such as the effects of certain pesticides or chemicals on neurons, such as rotenone or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Researchers have also demonstrated the influence of genetic mutations in younger patients. A-synuclein is a protein encoded by the SNCA gene, known to undergo various mutations in hereditary cases of PD. These mutations alter the composition and spatial arrangements of α-synuclein. The proteins, originally of linear shape, aggregate during the progression of PD, forming fibrillary structures that propagate through brain tissues. Among the physical therapies investigated for treating α-synuclein aggregation, ultrasonic waves, capable of altering protein and cell behaviors, have recently been used to disrupt α-synuclein fibrils within tissues in cellular and animal models, with the hope of developing treatments based on ultrasound properties. However, detecting fibrils typically requires invasive and non-biocompatible chemical compounds or cumbersome machinery. In this study, our acoustic experimental setup allowed us to investigate the response of α-synuclein to ultrasound perturbations. By capturing the transmitted wave across proteins over a frequency range 10 kHz to 10 MHz, no ultrasound signature indicating the presence of proteins was observed.Significance Statement: The results report there is no ultrasound signature of the presence of α-synuclein fibrils, from 10 kHz to 10 MHz.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The protein journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10930-024-10241-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decades, the incidence of Parkinson's disease (PD) cases has doubled in industrialized countries. While patients over 70 years old still represent more than half of the cases, the disease is increasingly affecting younger individuals. Environmental factors have been implicated, such as the effects of certain pesticides or chemicals on neurons, such as rotenone or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Researchers have also demonstrated the influence of genetic mutations in younger patients. A-synuclein is a protein encoded by the SNCA gene, known to undergo various mutations in hereditary cases of PD. These mutations alter the composition and spatial arrangements of α-synuclein. The proteins, originally of linear shape, aggregate during the progression of PD, forming fibrillary structures that propagate through brain tissues. Among the physical therapies investigated for treating α-synuclein aggregation, ultrasonic waves, capable of altering protein and cell behaviors, have recently been used to disrupt α-synuclein fibrils within tissues in cellular and animal models, with the hope of developing treatments based on ultrasound properties. However, detecting fibrils typically requires invasive and non-biocompatible chemical compounds or cumbersome machinery. In this study, our acoustic experimental setup allowed us to investigate the response of α-synuclein to ultrasound perturbations. By capturing the transmitted wave across proteins over a frequency range 10 kHz to 10 MHz, no ultrasound signature indicating the presence of proteins was observed.Significance Statement: The results report there is no ultrasound signature of the presence of α-synuclein fibrils, from 10 kHz to 10 MHz.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信