{"title":"The Root-Tuber Trypsin Inhibitor of Winged Bean and Its Anti-cancerous Activity Against Osteosarcoma Cell-Line","authors":"Rayees Ahmad Lone, Bhupendra Kumar, Mohd. Kashif, Shafquat Fakhrah, Tofan Kumar Rout, Sahabjada Siddiqui, Rojalin Pattanayak, Pradhyumna Kumar Singh, Chandra Sekhar Mohanty","doi":"10.1007/s10930-024-10244-7","DOIUrl":null,"url":null,"abstract":"<div><p>Trypsin inhibitor from the root-tuber of underutilized legume Winged bean (<i>Psophocarpus tetragonolobus</i> (L.) DC.) (WbT-TI) was purified using ion exchange chromatography followed by size-exclusion chromatography. The purified WbT-TI showed a molecular mass of 20,609 Da and an isoelectric point of 5.10. Ultraviolet circular dichroism (UV-CD) and intrinsic fluorescence reported, that WbT-TI interacts with trypsin. Domain-wise analysis of WbT-TI revealed it to belong to the Kunitz-type soybean trypsin inhibitor (STI) family with a specific β-trefoil fold. The sequence of WbT-TI showed 44% sequence coverage to acidic trypsin inhibitor from the seed of the same plant. Protein interaction similarity analysis (PIPSA) evaluated the electrostatic properties of WbT-TI and provided information about the interacting partners of trypsin inhibitors. The purified protein was quantified and tested for in vitro anticancer activity using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay against the human osteosarcoma (MG-63) cell line. At 5 µg/ml of WbT-TI, the highest inhibition was seen. These studies may lead to the development of winged bean protease inhibitor-based preventive and therapeutic strategies for different kinds of cancers.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"44 1","pages":"88 - 101"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10244-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trypsin inhibitor from the root-tuber of underutilized legume Winged bean (Psophocarpus tetragonolobus (L.) DC.) (WbT-TI) was purified using ion exchange chromatography followed by size-exclusion chromatography. The purified WbT-TI showed a molecular mass of 20,609 Da and an isoelectric point of 5.10. Ultraviolet circular dichroism (UV-CD) and intrinsic fluorescence reported, that WbT-TI interacts with trypsin. Domain-wise analysis of WbT-TI revealed it to belong to the Kunitz-type soybean trypsin inhibitor (STI) family with a specific β-trefoil fold. The sequence of WbT-TI showed 44% sequence coverage to acidic trypsin inhibitor from the seed of the same plant. Protein interaction similarity analysis (PIPSA) evaluated the electrostatic properties of WbT-TI and provided information about the interacting partners of trypsin inhibitors. The purified protein was quantified and tested for in vitro anticancer activity using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay against the human osteosarcoma (MG-63) cell line. At 5 µg/ml of WbT-TI, the highest inhibition was seen. These studies may lead to the development of winged bean protease inhibitor-based preventive and therapeutic strategies for different kinds of cancers.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.