{"title":"Symmetry Breaking and Nonlinear Electric Transport in van der Waals Nanostructures","authors":"T. Ideue, Y. Iwasa","doi":"10.1146/ANNUREV-CONMATPHYS-060220-100347","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-060220-100347","url":null,"abstract":"The recent development of artificially fabricated van der Waals nanostructures makes it possible to design and control the symmetry of solids and to find novel physical properties and related funct...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"201-223"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47002262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical Frequency Tuning by Sensory Hair Cells, the Receptors and Amplifiers of the Inner Ear","authors":"Pascal Martin, A. Hudspeth","doi":"10.1146/annurev-conmatphys-061020-053041","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-061020-053041","url":null,"abstract":"We recognize sounds by analyzing their frequency content. Different frequency components evoke distinct mechanical waves that each travel within the hearing organ, or cochlea, to a frequency-specific place. These signals are detected by hair cells, the ear's sensory receptors, in response to vibrations of mechanically sensitive antennas termed hair bundles. An active process enhances the sensitivity, sharpens the frequency tuning, and broadens the dynamic range of hair cells through several mechanisms, including active hair-bundle motility. A dynamic interplay between negative stiffness mediated by ion channels’ gating forces and delayed force feedback owing to myosin motors and channel reclosure by calcium ions brings the hair bundle to the vicinity of an oscillatory instability—a Hopf bifurcation. Operation near a Hopf bifurcation provides nonlinear generic features that are characteristic of hearing. Multiple gradients at molecular, cellular, and supercellular scales tune hair cells to characteristic frequencies that cover our auditory range.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-061020-053041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47381594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Nguyen, Yuqing Qiu, Suriyanarayanan Vaikuntanathan
{"title":"Organization and Self-Assembly Away from Equilibrium: Toward Thermodynamic Design Principles","authors":"Michael Nguyen, Yuqing Qiu, Suriyanarayanan Vaikuntanathan","doi":"10.1146/ANNUREV-CONMATPHYS-031218-013309","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-031218-013309","url":null,"abstract":"Studies of biological systems and materials, together with recent experimental and theoretical advances in colloidal and nanoscale materials, have shown how nonequilibrium forcing can be used to mo...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"273-290"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44193717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Have I Really Been a Condensed Matter Theorist? I'm Not Sure, but Does It Matter?","authors":"É. Brézin","doi":"10.1146/annurev-conmatphys-060120-092046","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-060120-092046","url":null,"abstract":"My life as a physicist has been a blend of field theory, statistical physics, and condensed matter physics over half a century. Expected final online publication date for the Annual Review of Conde...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-060120-092046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42472304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers","authors":"A. Rumyantsev, N. Jackson, J. Pablo","doi":"10.1146/annurev-conmatphys-042020-113457","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-042020-113457","url":null,"abstract":"Polyelectrolyte complex coacervates represent a wide class of materials with applications ranging from coatings and adhesives to pharmaceutical technologies. They also underpin multiple biological processes, which are only now beginning to be deciphered. The means by which molecular-scale architecture propagates into macroscopic structure, thermodynamics, and dynamics in complex coacervates is of central concern in physics, chemistry, biology, and materials science. How does polyion charge sequence dictate thermodynamic behavior? How does one tailor rheology or interfacial tension using macromolecular architecture? What emergent functionality from polymer complex coacervates has biological consequences? Recent developments in coacervate science shed light on many of these issues and raise exciting new challenges for the close integration of theory, simulations, and experiment.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-042020-113457","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44606304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Role of Competing Interactions in Charged Colloids with Short-Range Attraction","authors":"J. Ruiz-Franco, E. Zaccarelli","doi":"10.1146/annurev-conmatphys-061020-053046","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-061020-053046","url":null,"abstract":"In this review, we discuss recent advances in the investigation of colloidal systems interacting via a combination of short-range attraction and long-range repulsion. The prototypical examples of t...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-061020-053046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47777970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Director Deformations, Geometric Frustration, and Modulated Phases in Liquid Crystals","authors":"Jonathan V Selinger","doi":"10.1146/annurev-conmatphys-031620-105712","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031620-105712","url":null,"abstract":"This article analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bend, and splay nematic phases, as well as the twist-grain-boundary (TGB) and helical nanofilament variations on smectic phases. The analysis uses the concept of four fundamental modes of director deformation: twist, bend, splay, and a fourth mode related to saddle-splay. Each mode is coupled to a specific type of molecular order: chirality, polarization perpendicular and parallel to the director, and octupolar order. When the liquid crystal develops one type of spontaneous order, the ideal local structure becomes nonuniform, with the corresponding director deformation. In general, the ideal local structure is frustrated; it cannot fill space. As a result, the liquid crystal must form a complex global phase, which may have a combination of deformation modes, and may have a periodic array of defects. Thus, the concept of an ideal local structure under geometric frustration provides a unified framework to understand the wide variety of modulated phases. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48353670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Band Representations and Topological Quantum Chemistry","authors":"Jennifer Cano, B. Bradlyn","doi":"10.1146/annurev-conmatphys-041720-124134","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-041720-124134","url":null,"abstract":"In this article, we provide a pedagogical review of the theory of topological quantum chemistry and topological crystalline insulators. We begin with an overview of the properties of crystal symmetry groups in position and momentum space. Next, we introduce the concept of a band representation, which quantifies the symmetry of topologically trivial band structures. By combining band representations with symmetry constraints on the connectivity of bands in momentum space, we show how topologically nontrivial bands can be cataloged and classified. We present several examples of new topological phases discovered using this paradigm and conclude with an outlook toward future developments.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-041720-124134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44745141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling Grain Boundaries in Polycrystalline Halide Perovskite Solar Cells","authors":"Ji-Sang Park, A. Walsh","doi":"10.1146/annurev-conmatphys-042020-025347","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-042020-025347","url":null,"abstract":"Solar cells are semiconductor devices that generate electricity through charge generation upon illumination. For optimal device efficiency, the photogenerated carriers must reach the electrical contact layers before they recombine. A deep understanding of the recombination process and transport behavior is essential to design better devices. Halide perovskite solar cells are commonly made of a polycrystalline absorber layer, but there is no consensus on the nature and role of grain boundaries. This review concerns theoretical approaches for the investigation of extended defects. We introduce recent computational studies on grain boundaries, and their influence on point-defect distributions, in halide perovskite solar cells. We conclude with a discussion of future research directions.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-042020-025347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47649073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Fracture of Highly Deformable Soft Materials: A Tale of Two Length Scales","authors":"Rong Long, C. Hui, J. Gong, E. Bouchbinder","doi":"10.1146/annurev-conmatphys-042020-023937","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-042020-023937","url":null,"abstract":"The fracture of highly deformable soft materials is of great practical importance in a wide range of technological applications, emerging in fields such as soft robotics, stretchable electronics, and tissue engineering. From a basic physics perspective, the failure of these materials poses fundamental challenges due to the strongly nonlinear and dissipative deformation involved. In this review, we discuss the physics of cracks in soft materials and highlight two length scales that characterize the strongly nonlinear elastic and dissipation zones near crack tips in such materials. We discuss physical processes, theoretical concepts, and mathematical results that elucidate the nature of the two length scales and show that the two length scales can classify a wide range of materials. The emerging multiscale physical picture outlines the theoretical ingredients required for the development of predictive theories of the fracture of soft materials. We conclude by listing open challenges and directions for future investigations.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-042020-023937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41458754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}