Annual Review of Condensed Matter Physics最新文献

筛选
英文 中文
Active Turbulence 活跃的动荡
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-04-05 DOI: 10.1146/annurev-conmatphys-082321-035957
Ricard Alert, J. Casademunt, J. Joanny
{"title":"Active Turbulence","authors":"Ricard Alert, J. Casademunt, J. Joanny","doi":"10.1146/annurev-conmatphys-082321-035957","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-082321-035957","url":null,"abstract":"Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues. Despite occurring in the absence of inertia, chaotic active flows are reminiscent of inertial turbulence, and hence they are known as active turbulence. Here, we survey the field, providing a unified perspective over different classes of active turbulence. To this end, we divide our review in sections for systems with either polar or nematic order, and with or without momentum conservation (wet or dry). Comparing to inertial turbulence, we highlight the emergence of power-law scaling with either universal or nonuniversal exponents. We also contrast scenarios for the transition from steady to chaotic flows, and we discuss the absence of energy cascades. We link this feature to both the existence of intrinsic length scales and the self-organized nature of energy injection in active turbulence, which are fundamental differences with inertial turbulence. We close by outlining the emerging picture, remaining challenges, and future directions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41617447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 109
The Hubbard Model: A Computational Perspective Hubbard模型:一个计算视角
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-31 DOI: 10.1146/annurev-conmatphys-090921-033948
M. Qin, T. Schafer, S. Andergassen, P. Corboz, E. Gull
{"title":"The Hubbard Model: A Computational Perspective","authors":"M. Qin, T. Schafer, S. Andergassen, P. Corboz, E. Gull","doi":"10.1146/annurev-conmatphys-090921-033948","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-090921-033948","url":null,"abstract":"The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science. Despite its simplicity, the model exhibits an incredible wealth of phases, phase transitions, and exotic correlation phenomena. Although analytical methods have provided a qualitative description of the model in certain limits, numerical tools have shown impressive progress in achieving quantitative accurate results over the past several years. This article gives an introduction to the model, motivates common questions, and illustrates the progress that has been achieved over recent years in revealing various aspects of the correlation physics of the model. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47535944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 140
Topology and Symmetry of Quantum Materials via Nonlinear Optical Responses 非线性光学响应下量子材料的拓扑结构和对称性
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/ANNUREV-CONMATPHYS-031218-013712
J. Orenstein, Johnathan Moore, T. Morimoto, D. Torchinsky, J. Harter, D. Hsieh
{"title":"Topology and Symmetry of Quantum Materials via Nonlinear Optical Responses","authors":"J. Orenstein, Johnathan Moore, T. Morimoto, D. Torchinsky, J. Harter, D. Hsieh","doi":"10.1146/ANNUREV-CONMATPHYS-031218-013712","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-031218-013712","url":null,"abstract":"We review recent progress in the study of photogalvanic effects and optical second-harmonic generation in topological and noncentrosymmetric metals.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"247-272"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44948596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 61
Stem Cell Populations as Self-Renewing Many-Particle Systems 干细胞群作为自我更新的多粒子系统
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/annurev-conmatphys-041720-125707
David J. Jörg, Yu Kitadate, S. Yoshida, B. Simons
{"title":"Stem Cell Populations as Self-Renewing Many-Particle Systems","authors":"David J. Jörg, Yu Kitadate, S. Yoshida, B. Simons","doi":"10.1146/annurev-conmatphys-041720-125707","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-041720-125707","url":null,"abstract":"This article reviews the physical principles of stem cell populations as active many-particle systems that are able to self-renew, control their density, and recover from depletion. We illustrate t...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-041720-125707","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41713496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A Career in Physics 物理学生涯
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/annurev-conmatphys-060120-092219
B. Halperin
{"title":"A Career in Physics","authors":"B. Halperin","doi":"10.1146/annurev-conmatphys-060120-092219","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-060120-092219","url":null,"abstract":"Over the course of my career, I have had the opportunity to work on a wide variety of problems in condensed matter physics, benefiting from superb collaborators and environments full of inspiring c...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-060120-092219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42693120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymes as Active Matter 酶作为活性物质
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/annurev-conmatphys-061020-053036
Subhadip Ghosh, Ambika Somasundar, Ayusman Sen
{"title":"Enzymes as Active Matter","authors":"Subhadip Ghosh, Ambika Somasundar, Ayusman Sen","doi":"10.1146/annurev-conmatphys-061020-053036","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-061020-053036","url":null,"abstract":"Nature has designed multifaceted cellular structures to support life. Cells contain a vast array of enzymes that collectively perform essential tasks by harnessing energy from chemical reactions. D...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-061020-053036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46441082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Symmetry Breaking and Nonlinear Electric Transport in van der Waals Nanostructures 范德华纳米结构中的对称破缺和非线性电输运
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/ANNUREV-CONMATPHYS-060220-100347
T. Ideue, Y. Iwasa
{"title":"Symmetry Breaking and Nonlinear Electric Transport in van der Waals Nanostructures","authors":"T. Ideue, Y. Iwasa","doi":"10.1146/ANNUREV-CONMATPHYS-060220-100347","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-060220-100347","url":null,"abstract":"The recent development of artificially fabricated van der Waals nanostructures makes it possible to design and control the symmetry of solids and to find novel physical properties and related funct...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"201-223"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47002262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Mechanical Frequency Tuning by Sensory Hair Cells, the Receptors and Amplifiers of the Inner Ear 内耳感受毛细胞、受体和放大器的机械频率调节
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/annurev-conmatphys-061020-053041
Pascal Martin, A. Hudspeth
{"title":"Mechanical Frequency Tuning by Sensory Hair Cells, the Receptors and Amplifiers of the Inner Ear","authors":"Pascal Martin, A. Hudspeth","doi":"10.1146/annurev-conmatphys-061020-053041","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-061020-053041","url":null,"abstract":"We recognize sounds by analyzing their frequency content. Different frequency components evoke distinct mechanical waves that each travel within the hearing organ, or cochlea, to a frequency-specific place. These signals are detected by hair cells, the ear's sensory receptors, in response to vibrations of mechanically sensitive antennas termed hair bundles. An active process enhances the sensitivity, sharpens the frequency tuning, and broadens the dynamic range of hair cells through several mechanisms, including active hair-bundle motility. A dynamic interplay between negative stiffness mediated by ion channels’ gating forces and delayed force feedback owing to myosin motors and channel reclosure by calcium ions brings the hair bundle to the vicinity of an oscillatory instability—a Hopf bifurcation. Operation near a Hopf bifurcation provides nonlinear generic features that are characteristic of hearing. Multiple gradients at molecular, cellular, and supercellular scales tune hair cells to characteristic frequencies that cover our auditory range.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-061020-053041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47381594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Organization and Self-Assembly Away from Equilibrium: Toward Thermodynamic Design Principles 脱离平衡的组织与自组装:热力学设计原理
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/ANNUREV-CONMATPHYS-031218-013309
Michael Nguyen, Yuqing Qiu, Suriyanarayanan Vaikuntanathan
{"title":"Organization and Self-Assembly Away from Equilibrium: Toward Thermodynamic Design Principles","authors":"Michael Nguyen, Yuqing Qiu, Suriyanarayanan Vaikuntanathan","doi":"10.1146/ANNUREV-CONMATPHYS-031218-013309","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-031218-013309","url":null,"abstract":"Studies of biological systems and materials, together with recent experimental and theoretical advances in colloidal and nanoscale materials, have shown how nonequilibrium forcing can be used to mo...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"273-290"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44193717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Have I Really Been a Condensed Matter Theorist? I'm Not Sure, but Does It Matter? 我真的是凝聚态理论家吗?我不确定,但这重要吗?
IF 22.6 1区 物理与天体物理
Annual Review of Condensed Matter Physics Pub Date : 2021-03-10 DOI: 10.1146/annurev-conmatphys-060120-092046
É. Brézin
{"title":"Have I Really Been a Condensed Matter Theorist? I'm Not Sure, but Does It Matter?","authors":"É. Brézin","doi":"10.1146/annurev-conmatphys-060120-092046","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-060120-092046","url":null,"abstract":"My life as a physicist has been a blend of field theory, statistical physics, and condensed matter physics over half a century. Expected final online publication date for the Annual Review of Conde...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-060120-092046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42472304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信