{"title":"Active Turbulence","authors":"Ricard Alert, J. Casademunt, J. Joanny","doi":"10.1146/annurev-conmatphys-082321-035957","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-082321-035957","url":null,"abstract":"Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues. Despite occurring in the absence of inertia, chaotic active flows are reminiscent of inertial turbulence, and hence they are known as active turbulence. Here, we survey the field, providing a unified perspective over different classes of active turbulence. To this end, we divide our review in sections for systems with either polar or nematic order, and with or without momentum conservation (wet or dry). Comparing to inertial turbulence, we highlight the emergence of power-law scaling with either universal or nonuniversal exponents. We also contrast scenarios for the transition from steady to chaotic flows, and we discuss the absence of energy cascades. We link this feature to both the existence of intrinsic length scales and the self-organized nature of energy injection in active turbulence, which are fundamental differences with inertial turbulence. We close by outlining the emerging picture, remaining challenges, and future directions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41617447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Qin, T. Schafer, S. Andergassen, P. Corboz, E. Gull
{"title":"The Hubbard Model: A Computational Perspective","authors":"M. Qin, T. Schafer, S. Andergassen, P. Corboz, E. Gull","doi":"10.1146/annurev-conmatphys-090921-033948","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-090921-033948","url":null,"abstract":"The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science. Despite its simplicity, the model exhibits an incredible wealth of phases, phase transitions, and exotic correlation phenomena. Although analytical methods have provided a qualitative description of the model in certain limits, numerical tools have shown impressive progress in achieving quantitative accurate results over the past several years. This article gives an introduction to the model, motivates common questions, and illustrates the progress that has been achieved over recent years in revealing various aspects of the correlation physics of the model. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47535944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Orenstein, Johnathan Moore, T. Morimoto, D. Torchinsky, J. Harter, D. Hsieh
{"title":"Topology and Symmetry of Quantum Materials via Nonlinear Optical Responses","authors":"J. Orenstein, Johnathan Moore, T. Morimoto, D. Torchinsky, J. Harter, D. Hsieh","doi":"10.1146/ANNUREV-CONMATPHYS-031218-013712","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-031218-013712","url":null,"abstract":"We review recent progress in the study of photogalvanic effects and optical second-harmonic generation in topological and noncentrosymmetric metals.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"247-272"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44948596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stem Cell Populations as Self-Renewing Many-Particle Systems","authors":"David J. Jörg, Yu Kitadate, S. Yoshida, B. Simons","doi":"10.1146/annurev-conmatphys-041720-125707","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-041720-125707","url":null,"abstract":"This article reviews the physical principles of stem cell populations as active many-particle systems that are able to self-renew, control their density, and recover from depletion. We illustrate t...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-041720-125707","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41713496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Career in Physics","authors":"B. Halperin","doi":"10.1146/annurev-conmatphys-060120-092219","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-060120-092219","url":null,"abstract":"Over the course of my career, I have had the opportunity to work on a wide variety of problems in condensed matter physics, benefiting from superb collaborators and environments full of inspiring c...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-060120-092219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42693120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enzymes as Active Matter","authors":"Subhadip Ghosh, Ambika Somasundar, Ayusman Sen","doi":"10.1146/annurev-conmatphys-061020-053036","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-061020-053036","url":null,"abstract":"Nature has designed multifaceted cellular structures to support life. Cells contain a vast array of enzymes that collectively perform essential tasks by harnessing energy from chemical reactions. D...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-061020-053036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46441082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry Breaking and Nonlinear Electric Transport in van der Waals Nanostructures","authors":"T. Ideue, Y. Iwasa","doi":"10.1146/ANNUREV-CONMATPHYS-060220-100347","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-060220-100347","url":null,"abstract":"The recent development of artificially fabricated van der Waals nanostructures makes it possible to design and control the symmetry of solids and to find novel physical properties and related funct...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"201-223"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47002262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical Frequency Tuning by Sensory Hair Cells, the Receptors and Amplifiers of the Inner Ear","authors":"Pascal Martin, A. Hudspeth","doi":"10.1146/annurev-conmatphys-061020-053041","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-061020-053041","url":null,"abstract":"We recognize sounds by analyzing their frequency content. Different frequency components evoke distinct mechanical waves that each travel within the hearing organ, or cochlea, to a frequency-specific place. These signals are detected by hair cells, the ear's sensory receptors, in response to vibrations of mechanically sensitive antennas termed hair bundles. An active process enhances the sensitivity, sharpens the frequency tuning, and broadens the dynamic range of hair cells through several mechanisms, including active hair-bundle motility. A dynamic interplay between negative stiffness mediated by ion channels’ gating forces and delayed force feedback owing to myosin motors and channel reclosure by calcium ions brings the hair bundle to the vicinity of an oscillatory instability—a Hopf bifurcation. Operation near a Hopf bifurcation provides nonlinear generic features that are characteristic of hearing. Multiple gradients at molecular, cellular, and supercellular scales tune hair cells to characteristic frequencies that cover our auditory range.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-061020-053041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47381594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Nguyen, Yuqing Qiu, Suriyanarayanan Vaikuntanathan
{"title":"Organization and Self-Assembly Away from Equilibrium: Toward Thermodynamic Design Principles","authors":"Michael Nguyen, Yuqing Qiu, Suriyanarayanan Vaikuntanathan","doi":"10.1146/ANNUREV-CONMATPHYS-031218-013309","DOIUrl":"https://doi.org/10.1146/ANNUREV-CONMATPHYS-031218-013309","url":null,"abstract":"Studies of biological systems and materials, together with recent experimental and theoretical advances in colloidal and nanoscale materials, have shown how nonequilibrium forcing can be used to mo...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"12 1","pages":"273-290"},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44193717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Have I Really Been a Condensed Matter Theorist? I'm Not Sure, but Does It Matter?","authors":"É. Brézin","doi":"10.1146/annurev-conmatphys-060120-092046","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-060120-092046","url":null,"abstract":"My life as a physicist has been a blend of field theory, statistical physics, and condensed matter physics over half a century. Expected final online publication date for the Annual Review of Conde...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":22.6,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-060120-092046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42472304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}